Please wait a minute...
img

官方微信

遥感技术与应用  2016, Vol. 31 Issue (6): 1114-1121    DOI: 10.11873/j.issn.1004-0323.2016.6.1114
数据与图像处理     
线性约束与局部对比相耦合的多光谱遥感图像中目标探测
张泰然,韦玉春
(南京师范大学地理科学学院,南京师范大学虚拟地理环境教育部重点实验室,江苏 南京 210023)
Target Detection for Multispectral Remote Sensing Imagery Coupling Linearly Constraint and Local Contrast
Zhang Tairan,Wei Yuchun
(Key Lab of Virtual Geographic Environment,Ministry of Education,Nanjing Normal University,Nanjing 210023,China)
 全文: PDF(11277 KB)  
摘要:

目标探测是遥感影像信息提取中的重要内容,然而,随着目标像元数目增多和相似地物的干扰,目标探测的虚警率会明显上升。将线性约束最小方差方法(LCMV)与局部对比方法(LCM)相结合,构建了一种新的多光谱遥感图像中目标探测方法(LCLCM):首先利用样本相关矩阵对目标进行半解混,然后利用图像的空间性增强目标信息、抑制背景信息,最后进行图像归一化和图像分割。以Landsat 8多光谱图像中船只提取为例进行方法验证,LCLCM的虚警率为1.07%,优于LCMV和LCM的虚警率12.39%和11.26%,表明该方法能够进行有效稳健的目标探测。

关键词: 目标探测弱信息空间相关性生物视觉    
Abstract:

Target detection is one of the important content in remote sensing imagery information extraction,however,with the increase of image size and the interference of similar objects,the false alarm rate of target detection increase obviously.This paper built a multispectral remote sensing imagery target detection method (LCLCM) by combining the linearly constrained minimum variance (LCMV) with the local contrast method (LCM):first,using the correlation matrix of some targets to partial unmix image,then,adding the spatiality to enhance the target information and inhibit the background information,finally,normalizing and segmenting the image.Taking the boat in Landsat 8 multispectral imagery as the target to test this method,the false alarm rate of LCLCM is 1.07% and better than that of LCMV and LCM,which are 12.39% and 11.26%,respectively,showing that the method could detect target effectively and robustly.

Key words: Target detection    Weak information    Spatial correlation    Biological visual system
收稿日期: 2015-11-04 出版日期: 2016-12-30
:  TN 911.7  
基金资助:

国家自然科学基金项目“面向二类水体叶绿素a浓度遥感反演的光谱纯化研究”(41471283)。

通讯作者: 韦玉春(1965-),男,河北玉田人,教授,主要从事环境遥感\,地理建模等研究。Email:weiyuchun@njnu.edu.cn。   
作者简介: 张泰然(1991-),男,安徽滁州人,硕士研究生,主要从事环境遥感,目标探测等研究。Email:ztr_zhang@163.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张泰然
韦玉春

引用本文:

张泰然,韦玉春. 线性约束与局部对比相耦合的多光谱遥感图像中目标探测[J]. 遥感技术与应用, 2016, 31(6): 1114-1121.

Zhang Tairan,Wei Yuchun . Target Detection for Multispectral Remote Sensing Imagery Coupling Linearly Constraint and Local Contrast. Remote Sensing Technology and Application, 2016, 31(6): 1114-1121.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2016.6.1114        http://www.rsta.ac.cn/CN/Y2016/V31/I6/1114

[1]Landgrebe D.Hyperspectral Image Data Analysis[J].IEEE Signal Processing Magazine,2002,19(1):1728.

[2]Manolakis D,Shaw G.DetectionAlgorithms for Hyperspectral Imaging Applications[J].IEEE Signal Processing Magazine,2002,19(1):2943.

[3]Geng,X R,Zhao Y C.Principle of Small Target Detection for Hyperspectral Imagery[J].Earth Sciences,2007,8(50):12251231.

[4]Kruse F A,Lefkoff A B,Boardman J W,et al.The Spectral Image Processing System(SIPS):Software forIntegrated Analysis of AVIRIS data[C]//JPL,Summaries of the Third Annual JPL Airborne Geoscience Workshop.1992,1.

[5]Harsanyi J C.Detection and Classification of Subpixel Spectral Signatures in Hyperspectral Image Sequences[D].Maryland:University of Maryland Baltimore County,1993.

[6]Sabol D E,Adams J B,Smith M O.Quantitative Subpixel Spectral Detection of Targets in Multispectral Images[J].Journal of Geophysical Research:Planets (1991~2012),1992,97(E2):26592672.

[7]Hazel G G.Multivariate Gaussian MRF for Multispectral Scene Segmentation and Anomaly Detection[J].IEEE Transactions on Geoscience and Remote Sensing,2000,38(3):11991211.

[8]Chang C,Ren H.Linearly Constrained Minimum Variance Beamforming Approach to Target Detection and Classification for Hyperspectral Imagery[C]//1999:Geoscience and Remote Sensing Symposium,1999.IGARSS'99 Proceedings.IEEE 1999 International.

[9]Deng Xin,Liao Guisheng,Liu Hongqing.Recursive Robust LCMV Beamforming Algorithm[J].Systems Engineering and Electronics,2007,29(3):449452.[邓欣,廖桂生,刘宏清.递归的稳健LCMV波束形成算法[J].系统工程与电子技术,2007,29(3):449452.]

[10]Cheng Chunyue,Lv Yinghua.Application of Improved LCMV Algorithm in Restraining Interference and Noise[J].Journal of Electronic Measurement and Instrument,2006,20(4):2932.[程春悦,吕英华.改进LCMV算法在抑制干扰噪声中的应用[J].电子测量与仪器学报,2006,20(4):2932.]

[11]Yu Ze,Zhou Mengqing,Chen Jie,et al.Approach of Range Ambiguity Suppression for Spaceborne SAR based on LCMV Algorithm[J].Journal of Beijing University of Aeronautics and Astronautics,2006,32(9):10351038.[于泽,周荫清,陈杰,等.基于LCMV算法的星载SAR距离模糊抑制方法[J].北京航空航天大学学报,2006,32(9):10351038.]

[12]Kwon H,Nasrabadi N M.Hyperspectral Target Detection Using Kernel Matched Subspace Detector[C]//2004:Image Processing,2004.ICIP'04.International Conference on,2004.

[13]Kwon H,Nasrabadi N M.Hyperspectral Target Detection Using Kernel Spectral Matched Filter[C]//2004:Computer Vision and Pattern Recognition Workshop.CVPRW'04.Conference on,2004.

[14]Kwon H,Nasrabadi N M.Kernel RXAlgorithm A Nonlinear Anomaly Detector for Hyperspectral Imagery[J].IEEE Transactions on Geoscience and Remote Sensing,2005,43(2):388397.

[15]Kwon H,Nasrabadi N M.Kernel Orthogonal Subspace Projection for Hyperspectral Signal Classification[J].IEEE Transactions on Geoscience and Remote Sensing,2005,43(12):29522962.

[16]Kwon H,Nasrabadi N M.Kernel Adaptive Subspace Detector for Hyperspectral Imagery[J].IEEE Geoscience and Remote Sensing Letters,2006,3(2):271275.

[17]Kwon H,Der S Z,Nasrabadi N M.Adaptive Anomaly Detection Using Subspace Separation for Hyperspectral Imagery[J].Optical Engineering,2003,42(11):3342.

[18]Liu W,ChangeCheinI.A Nested Spatial Windowbased Approach to Target Detection for Hyperspectral Imagery[C]//2004:Geoscience and Remote Sensing Symposium,2004.IGARSS'04.Proceedings.2004 IEEE International.

[19]Chen C L P,Li H,Wei Y T,et al.A Local Contrast Method for Small Infrared Target Detection[J].IEEE Transactions on Geoscience and Remote Sensing,2014,52(1):574581.

[20]Han J H,Ma Y,Zhou B,et al.A Robust Infrared Small Target Detection Algorithm based on Human Visual System[J].IEEE Geoscience and Remote Sensing Letters,2014,11(12):21682172.


 

[1] 袁宗泽,孙浩,计科峰,邹焕新. 基于Fisher字典学习稀疏表示的高光谱图像分类[J]. 遥感技术与应用, 2014, 29(4): 646-652.
[2] 魏欣欣, 燕守勋. 比较研究目标探测算法在地质小目标探测上的性能[J]. 遥感技术与应用, 2010, 25(1): 77-83.