Please wait a minute...
img

官方微信

遥感技术与应用
甘肃省遥感学会专栏     
基于HJ-1A高光谱遥感数据的湟水流域典型农作物分类研究
史飞飞,高小红,杨灵玉,何林华,贾伟#br#
(青海师范大学生命与地理科学学院,青海省自然地理与环境过程重点实验室,青海 西宁810008)
 全文: PDF(25469 KB)  
摘要:
利用高光谱遥感技术识别农作物类型已经成为高光谱遥感研究的热点领域。以青海省湟水流域内油菜、小麦和青稞等典型农作物为分类对象,以HJ\|1A HSI高光谱数据和GF\|1 WFV高分辨率数据为数据源,探讨利用高光谱遥感影像进行农作物类型信息提取的方法。数据经预处理后,首先,利用WFV数据采用面向对象方法提取研究区农作物种植边界,并利用其对HSI高光谱影像进行种植区域提取;其次,将提取后的高光谱影像经数据形式变换获得包括:R、1/R、Log(R)、d(R)、d(Log(R))和CR共6种数据形式;最后,利用上述6种数据形式的全波段数据和经遗传算法GA\|SVM进行光谱波段选取后的6种特征数据,采用支持向量机SVM方法进行农作物分类。结果表明:采用基于样本的面向对象分类方法提取耕地信息精度高且实现周期短;利用GA\|SVM波段选取后的6种特征数据集进行农作物分类,其精度显著高于全波段数据集分类精度;6种数据变换形式中,d(Log(R))和CR是两种最优的高光谱分类数据形式,其全波段和特征波段数据进行农作物分类均能获得较好的分类精度,总体精度最高分别达88%和86%,而采用1/R/Log(R)和R数据形式需经GA\|SVM光谱波段选取后才能获得较优分类精度。
关键词: 高光谱遥感; HJ\1A;农作物分类;支持向量机;遗传算法
    
出版日期: 2017-07-20
:  TP 79  
基金资助: 国家自然科学基金项目(40861022,41550003),青海省重点实验室发展专项(2014\|Z\|Y24\,2015\|Z\|Y01)\.[ZK)]

作者简介: 史飞飞(1991- ),男,陕西凤翔人,硕士研究生,主要从事遥感应用与地理空间数据分析研究。Email:shifeifei1203@126.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
史飞飞
高小红
杨灵玉
何林华
贾伟

引用本文:

史飞飞,高小红,杨灵玉,何林华,贾伟. 基于HJ-1A高光谱遥感数据的湟水流域典型农作物分类研究[J]. 遥感技术与应用, 10.11873/j.issn.1004-0323.2017.2.0206.

链接本文:

http://www.rsta.ac.cn/CN/Y2017/V32/I2/206

[1] 汪子豪,秦其明,孙元亨. 基于BP神经网络的地表温度空间降尺度方法[J]. 遥感技术与应用, 2018, 33(5): 793-802.
[2] 王恺宁,王修信,黄凤荣,罗涟玲. 喀斯特城市地表温度遥感反演算法比较[J]. 遥感技术与应用, 2018, 33(5): 803-810.
[3] 石满,陈健,覃帮勇,李盛阳. 天宫二号数据地表温度反演及其在城市群热环境监测中的应用[J]. 遥感技术与应用, 2018, 33(5): 811-819.
[4] 金点点,宫兆宁. 基于Landsat 系列数据地表温度反演算法对比分析—以齐齐哈尔市辖区为例[J]. 遥感技术与应用, 2018, 33(5): 830-841.
[5] 苗翔鹰,苗洪利,张旭东,黄霞凤,王桂忠. 利用星下点干涉相位法提高三维成像高度计测高精度[J]. 遥感技术与应用, 2018, 33(5): 866-872.
[6] 谢旭,陈芸芝. 基于PSO-RBF神经网络模型反演闽江下游水体悬浮物浓度[J]. 遥感技术与应用, 2018, 33(5): 900-907.
[7] 高莎,林峻,马涛,吴建国,郑江华. 新疆巴音布鲁克草原马先蒿光谱特征提取与分析[J]. 遥感技术与应用, 2018, 33(5): 908-914.
[8] 王常颖,田德政,韩园峰,隋毅,初佳兰. 基于属性差决策树的全极化SAR影像海冰分类[J]. 遥感技术与应用, 2018, 33(5): 975-982.
[9] 范锦龙,张晔萍,李昌宝,许文波,刘少杰,薛飞,覃志豪. 风云卫星中分辨率遥感数据几何定位误差分析[J]. 遥感技术与应用, 2018, 33(4): 621-627.
[10] 梁继,褚楠,郑敦勇,彭焕华,张静. 面向道路边坡监测的高分二号应用研究[J]. 遥感技术与应用, 2018, 33(4): 638-645.
[11] 李晨伟,张瑞丝,张竹桐,曾敏 . 基于多源遥感数据的构造解译与分析—以西藏察隅吉太曲流域为例[J]. 遥感技术与应用, 2018, 33(4): 657-665.
[12] 汪航,师茁. 基于MODIS时间序列数据的春尺蠖虫害遥感监测方法研究—以新疆巴楚胡杨为例[J]. 遥感技术与应用, 2018, 33(4): 686-695.
[13] 苗茜,王昭生,王荣,黄玫,孙佳丽. 基于NDVI数据评估O3污染对华北地区夏季植被生长的影响[J]. 遥感技术与应用, 2018, 33(4): 696-702.
[14] 王恒,杨昊翔,张丽. 海上丝绸之路沿线区域植被覆盖变化特征[J]. 遥感技术与应用, 2018, 33(4): 703-712.
[15] 谢军飞,周坚华. 城镇绿化植物群软分类[J]. 遥感技术与应用, 2018, 33(4): 721-730.