Please wait a minute...
img

官方微信

遥感技术与应用
模型与反演     
利用MODIS资料计算不同云天条件下的地表太阳辐射
黎微微1,3,胡斯勒图2,陈洪滨1,尚华哲2#br# #br#
(1.中国科学院大气物理研究所中层大气和全球环境探测重点实验室,北京100029;
2.中国科学院遥感与数字地球研究所遥感科学国家重点实验室,北京100101;
3.中国科学院大学地球科学学院,北京100049)
Estimation of Surface Solar Radiation Using MODIS Satellite Data and RSTAR Model
Li Weiwei1,3,Husi Letu2,Chen Hongbin1,Shang Huazhe2
(1.Key Laboratory of Middle Atmosphere and Global Environment Observation,Instituteof Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China;
2.State Key Laboratory of Remote Sensing Science,Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences,Beijing 100101,China;
3.University of Academy of Sciences,Beijing 100049,China)
 全文: PDF(1549 KB)  
摘要:
利用MODIS气溶胶和云产品卫星数据与大气辐射传输模式RSTAR,进行了晴空和有云条件下地表太阳辐射计算,并与香河综合辐射站的地基辐射测量值相比较。分析表明,晴空下二者相关性较好,相关系数平方R2值为0.95,均方根误差RMSE为38.8 W/m2。有云条件下,计算结果较差于晴空条件下,R2值为0.88,RMSE为88.2 W/m2。观测显示,香河站云—气溶胶共存现象较多,而MODIS仅按单一层的云进行微物理参数反演,导致模式输入参数误差,给地表太阳辐射计算结果引入误差。为了分析云-气溶胶共存状态对计算地表太阳辐射的影响,利用RSTAR计算了不同光学厚度的云和气溶胶在特定波段卫星观测的辐亮度值,并对于特定波段卫星接收的辐亮度值,用不同垂直结构的云和气溶胶分别反演其光学和微物理参数,再利用反演的结果分别计算相应的地表太阳辐射。结果表明:相对于单一云层的反演结果,云下气溶胶光学厚度(AOD)为0.1时,由反演误差所导致的地表太阳辐射估算误差较小;而随着AOD增加影响明显增大,在AOD为1.2时,相对误差达17.79%~18.38%。对于污染较重的华北地区而言,分析云覆盖下的气溶胶对地表太阳辐射的影响,有助于提高有云条件下地表太阳辐射的计算精度。
关键词: 地表太阳辐射MODISRSTAR云天气溶胶    
Abstract: The MODIS aerosol product and cloud product data are combined with the atmospheric radiation transmission model RSTAR to calculate the surface solar radiation under sunny and cloudy conditions.The results are compared with the ground observed values of Xianghe integrated radiation station.It shows that the simulated value and observed value have good correlation.The R2 and RMSE are 0.95 and 38.8 W/m2 in the clear skies,while 0.88 and 88.2 W/m2 in the cloudy skies.The results show that more cloud\|aerosol mixed states is in Xianghe station,while MODIS can only invert single microphysical parameter of cloud layer,which leads to error of model input parameter,bringing error to the calculation result of surface solar radiation.In order to quantitatively analyze the effect,the RSTAR radiation model was used to calculate the radiance values,and invert f different cloud and aerosol optical thickness,calculating surface solar radiation.The results show that the error of estimation of surface solar radiation is 1.29%~1.56% when the aerosol optical thickness (AOD)is 0.1,compared with the single layer.With the increase of AOD,the effect of AOD increased obviously.The relative error was 17.79%~18.38% when AOD was 1.2.For the heavily polluted areas of North China,it is important to analyze the influence of aerosol on the surface solar radiation under cloud cover,which is very important to improve the calculation accuracy of surface solar radiation under cloud conditions.

Key words: Surface solar radiation    MODIS;RSTAR;Cloud sky;Aerosol
收稿日期: 2016-12-04 出版日期: 2017-09-13
:  TP 79  
基金资助: 国家自然科学基金项目(41305011、41275039、41575034)共同资助


作者简介: 黎微微(1992-),女,广西桂林人,硕士研究生,主要从事大气遥感方面的研究。Email:liweiwei@mail.iap.ac.cn。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
黎微微
胡斯勒图
陈洪滨
尚华哲

引用本文:

黎微微,胡斯勒图,陈洪滨,尚华哲. 利用MODIS资料计算不同云天条件下的地表太阳辐射[J]. 遥感技术与应用, 10.11873/j.issn.1004-0323.2017.4.0643.

Li Weiwei,Husi Letu,Chen Hongbin,Shang Huazhe. Estimation of Surface Solar Radiation Using MODIS Satellite Data and RSTAR Model. Remote Sensing Technology and Application, 10.11873/j.issn.1004-0323.2017.4.0643.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2017.4.0643        http://www.rsta.ac.cn/CN/Y2017/V32/I4/643

[1]Halthore R N,Schwartz S E,Michalsky J J,et al.Comparison of Model Estimated Measured Direct-Normal Solar Irradiance[J].Journal of Geophysical Research All Series,1997,102:29991-30002.
[2]Chen Weiming,Bian Duo,Yu Fan.Measurement of Direct Solar Radiation and Scattering Radiation in Clear Sky by Satellite Data[J].ActaMeteorologicaSinica,2000,58(4):457-469.[陈渭民,边多,郁凡.由卫星资料估算晴空大气太阳直接辐射和散射辐射[J].气象学报,2000,58(4):457-469.]
[3]Yu Yu,Xia Xiang’ao,Chen Hongbin,et al.Comparison of Solar Shortwave Radiation Observation and Pattern in Clear Sky[J].ActaEnergiae Solaris Sinica,2007,28(3):233-240.[余予,夏祥鳌,陈洪滨,等.晴空大气太阳短波辐射观测与模式比较[J].太阳能学报,2007,28(3):233-240.]
[4]Chen Hongbin.Abnormal Absorption of Solar Radiation by Clouds and Clouds[J].Chinese Journal of Atmospheric Science,1997,21(6):750-757.[陈洪滨,关于云和云天大气对太阳辐射的吸收异常[J].大气科学,1997,21(6):750-757.]
[5]Hu Liqin,Liu Changsheng.Effects of Clouds and Aerosols on Atmospheric Absorption of Solar Radiation[J].Plateau Meteorology,2001,20(3):264-270.[胡丽琴,刘长盛.云层与气溶胶对大气吸收太阳辐射的影响[J].高原气象,2001,20(3):264-270.]
[6]Wei Heli,Xu Qingshan,Zhang Tianshu.GMS-5 Meteorological Satellite for Remote Sensing of Total Solar Radiation[J].Journal of Remote Sensing,2003,7(6):465-471.[魏合理,徐青山,张天舒.用 GMS-5 气象卫星遥测地面太阳总辐射[J].遥感学报,2003,7(6):465-471.]
[7]Takenaka H,Nakajima T Y,Higurashi A,et al.Estimation of Solar Radiation Using a Neural Network based on Radiative Transfer[J].Journal of Geophysical Research:Atmospheres 116 (D8).
[8]Quan Weijun,Chen Hongbin,Guo Liwen,et al.Comparison of Two Parameterized Models of Net Solar Radiation Inversion in Beijing[J].ActaMeteorologicaSinica,2009,(4):623-630.[权维俊,陈洪滨,郭利文,等.两种反演地表净太阳辐射的参数化模式在北京地区的比较[J].气象学报,2009,(4):623-630.]
[9]Zhang Wenxing,Lü Daren,Wang Pucai.Observation and analysis of atmospheric aerosol optics in Beijing area[J].Chinese Journal of Environmental Science,2002,22(6):495-500.[章文星,吕达仁,王普才.北京地区大气气溶胶光学后的的观测和分析[J].中国环境科学,2002,22(6):495-500.]
[10]Lin C G,Yang K,Huang J P,et al.Impacts of Wind Stilling on Solar Radiation Variability in China[J].Scientific Reports,2015,5.doi:10.1038/srep 15135.
[11]Hutchison K D,Hauss B,Iisager B D,et al.Differentiating between Clouds and Heavy Aerosols in Sun-glint Regions[J].Journal of Atmospheric and Oceanic Technology,2010,27(6):1085-1094.
[12]Shang H Z,Chen L F,Tao J H,et al.Synergetic Use of MODIS Cloud Parameters for Distinguishing High Aerosol Loadings from Clouds Over the North China Plain[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2014,7(12):4879-4886.
[13]Nakajima T,Tanaka M.Matrix Formulations for the Transfer of Solar Radiation in a Plane-parallel Scattering Atmosphere[J].Journal of Quantitative Spectroscopy and Radiative Transfer,1986,35(1):13-21.
[14]NakajimaT,Tanaka M.Algorithms for Radiative Intensity Calculations in Moderately Thick Atmospheres Using a Truncation Approximation[J].Journal of Quantitative Spectroscopy and Radiative Transfer,1988,40(1):51-69.
[15]Frey R A,Ackerman S A,Liu Y,et al.Cloud Detection with MODIS.Part Ⅰ:Improvements in the MODIS Cloud Mask for Collection 5[J].Journal of Atmospheric and Oceanic Technology,2008,25(7):1057-1072.
[16]Ackerman S,Holz R,Frey R,et al.Cloud Detection with MODIS.Part Ⅱ:Validation[J].Journal of Atmospheric and Oceanic Technology,2008,25(7):1073-1086.
[17]Fan X H,Xia X G,Chen H B.Comparison of Column-Integrated Aerosol Optical and Physical Properties in an Urban and Suburban Site on the North China Plain[J].Advances in Atmospheric Sciences,2015,32(4):477-486
[18]Shi Guangyu,Xu Li,Guo Jiandong.High-altitude Balloon Detection of Vertical Distribution of Atmospheric Ozone and Aerosol[J].Chinese Journal of Atmospheric Sciences,1996,20(4):401-407.[石广玉,许黎,郭建东.大气臭氧与气溶胶垂直分布的高空气球探测[J].大气科学,1996,20(4):401-407.]
[19]Sun Qiang,Fan Xuehua,Xia Xiang,ao.Observation and Analysis of Vertical Distribution of Aerosol in North China[J].Meteorology and Environmental Sciences,2016,39(1):26-33.[孙强,范学花,夏祥鳌.华北地区气溶胶垂直分布特征的观测与分析[J].气象与环境科学,2016,39(1):26-33.]
[1] 金点点,宫兆宁. 基于Landsat 系列数据地表温度反演算法对比分析—以齐齐哈尔市辖区为例[J]. 遥感技术与应用, 2018, 33(5): 830-841.
[2] 冯姣姣,王维真,李净,刘雯雯. 基于BP神经网络的华东地区太阳辐射模拟及时空变化分析[J]. 遥感技术与应用, 2018, 33(5): 881-889.
[3] 汪航,师茁. 基于MODIS时间序列数据的春尺蠖虫害遥感监测方法研究—以新疆巴楚胡杨为例[J]. 遥感技术与应用, 2018, 33(4): 686-695.
[4] 拉巴卓玛,次珍. 2002~2015年西藏雅鲁藏布江流域积雪变化及影响因子分析研究[J]. 遥感技术与应用, 2018, 33(3): 508-519.
[5] 汤玉明,邓孺孺,刘永明,熊龙海. 大气气溶胶遥感反演研究综述[J]. 遥感技术与应用, 2018, 33(1): 25-34.
[6] 张帅,师春香,梁晓,贾炳浩,吴捷. 风云三号积雪覆盖产品评估[J]. 遥感技术与应用, 2018, 33(1): 35-46.
[7] 陈健,周杰,李雅雯. 基于静止卫星GOCI数据的陆地上空气溶胶光学厚度遥感反演[J]. 遥感技术与应用, 2017, 32(6): 1040-1047.
[8] 孙晓,吴孟泉,何福红,张安定,赵德恒,李勃 . 2015年黄海海域浒苔时空分布及台风“灿鸿”影响研究[J]. 遥感技术与应用, 2017, 32(5): 921-930.
[9] 姜涛,朱文泉,詹培,唐珂,崔雪锋,张天一. 一种抗时序数据噪声的冬小麦识别方法研究[J]. 遥感技术与应用, 2017, 32(4): 698-708.
[10] 许青云,顾伟伟,谢涛,刘锐. 秸秆焚烧火点遥感监测算法实现[J]. 遥感技术与应用, 2017, 32(4): 728-733.
[11] 唐志光,王建,王欣,彭焕华,梁继. 近15年天山地区积雪时空变化遥感研究[J]. 遥感技术与应用, 2017, 32(3): 556-563.
[12] 葛美香,赵军,仲波,杨爱霞. FY-3/VIRR及MERSI与EOS/MODIS植被指数比较与差异原因分析[J]. 遥感技术与应用, 2017, 32(2): 262-273.
[13] 杨志刚,达娃,除多. 近15 a青藏高原积雪覆盖时空变化分析[J]. 遥感技术与应用, 2017, 32(1): 27-36.
[14] 于小淇,邱玉宝,阮永俭,石利娟,拉巴卓玛. 高亚洲地区无云积雪遥感二值产品对比和精度验证分析[J]. 遥感技术与应用, 2017, 32(1): 37-48.
[15] 邵东航,李弘毅,王建,郝晓华,王润科,马媛. 基于多源遥感数据的积雪反照率反演研究[J]. 遥感技术与应用, 2017, 32(1): 71-77.