Please wait a minute...
img

官方微信

遥感技术与应用
遥感应用     
基于混合像元分解的高光谱影像柑橘识别方法
李恒凯1,欧彬1,刘雨婷1,邱玉宝2
(1.江西理工大学建筑与测绘工程学院,江西 赣州341000;
2.中国科学院遥感与数字地球研究所,数字地球重点实验室,北京100094)
Citrus Recognition Methods of Hyperspectral Remote Sensing Image based on Spectral Unmixing Model
Li Hengkai1,Ou Bin1,Liu Yuting1,Qiu Yubao2
(1.Faculty of Architectural and Surveying Engineering,Jiangxi University of Scienceand Technology,Ganzhou 341000;
2.Chinese Academy of Sciences,Institute of Remote Sensing and Digital Earth,DigitalEarth Laboratory,Beijing 100094,China)
 全文: PDF(7967 KB)  
摘要:
为及时准确地监测柑橘种植信息,以江西省会昌县作为研究区,采用EO\|1 Hyperion高光谱影像作为数据源,构建了基于混合像元分解的高光谱影像柑橘识别方法。首先,针对EO\|1 Hyperion高光谱影像提供了242个波段,光谱范围广的特点,在波段选择、大气校正等预处理的基础上,提取研究区典型地物端元光谱曲线;然后,利用全约束线性光谱混合模型进行混合像元分解,提取出柑橘端元的丰度值,并通过对照高分遥感影像,构建柑橘端元丰度与柑橘实际种植的对应的关系。结果表明:由于典型地物端元提取中不可避免的误差及柑橘冠层覆盖度的差异,柑橘种植的准确识别与其柑橘端元丰度阈值存在对应关系。在经过反复试验的条件下,研究区柑橘端元丰度阈值设定在0.30~0.45范围之内,总精度达到90%以上,能够满足柑橘种植识别要求。
关键词: 柑橘识别EO-1 Hyperion高光谱影像混合像元分解柑橘丰度值
    
Abstract: In order to monitor the citrus planting information timely and accurately,We take Huichang County of Jiangxi Province as the research area,using EO\|1 Hypersion hyperspectral remote sensing (HRS)image as a datasource to build a citrus recognition methods of hyperspectral remote sensing image based on spectral unmixing.First of all,the EO\|1 Hyperion hyperspectral remote sensing image has 242 bands,and it has a wide spectrum rang.It can extract the spectral curve of typical objects in the study area,which is based on the image pre\|processing including the band selection,the atmospheric correction and so on.Then,we use the fully constrained linear spectral mixture model of spectral unmixing to decompose the mixed pixels of the image,and then extract the abundance value of citrus.Finally,we construct the relationship between citrus abundance and the actual cultivation of citrus based on the high resolution remote sensing image.The results indicated that the unavoidable error in the extraction of the typical objects and the differences of the citrus canopy coverage can lead to the corresponding relationship between the citrus plant accurate identification and the citrus abundance threshold value.Under the condition of repeated experiments,the study area of citrus abundance thresholds in the range of 0.30~0.45,the overall accuracy can reach more than 90%,and it can meet the requirements of identification of citrus.
Key words: Citrus recognition methods;EO\    1 Hypersion hyperspectral remote sensing image;Spectral unmixing;Citrus abundance thresholds
收稿日期: 2016-03-29 出版日期: 2017-09-13
:  TP 79  
基金资助: 国家自然科学基金项目(41561091),江西省教育厅科技课题(GJJ150659),江西省社会科学规划课题(14YJ20)资助。

作者简介: 李恒凯(1980-),男,湖北安陆人,博士,副教授,主要从事遥感建模与分析研究。Email: giskai@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李恒凯
欧彬
刘雨婷
邱玉宝

引用本文:

李恒凯,欧彬,刘雨婷,邱玉宝. 基于混合像元分解的高光谱影像柑橘识别方法[J]. 遥感技术与应用, 10.11873/j.issn.1004-0323.2017.4.0743.

Li Hengkai,Ou Bin,Liu Yuting,Qiu Yubao. Citrus Recognition Methods of Hyperspectral Remote Sensing Image based on Spectral Unmixing Model. Remote Sensing Technology and Application, 10.11873/j.issn.1004-0323.2017.4.0743.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2017.4.0743        http://www.rsta.ac.cn/CN/Y2017/V32/I4/743

[1]Tang Zili,Yang Yong,Hu Weiguo,et al.Forecast of Citrus Leaves Frozen Injury based on Spectral Signature[J].Transactions of the Chinese Society of Agricultural Engineering,2012,28(11): 146-151.[唐子立,杨勇,胡卫国,等.利用光谱反射特征预测柑橘叶片冻害[J].农业工程学报,2012,28(11): 146-151.]
[2]Xiang Yun,Qi Chunjie,Lu Qian.The Comparative Advantage and Its Influencing Factors of Citrus Production in Hubei Province[J].Economic Geography,2014,34(11): 134-139.[向云,祁春节,陆倩.湖北省柑橘生产的区域比较优势及其影响因素研究[J].经济地理,2014,34(11): 134-139.]
[3]Zhang Jiankang,Cheng Yanpei,Zhang Fawang,et al.Crops Planting Information Extraction based on Multi-temporal Remote Sensing Images[J].Transactions of the Chinese Society of Agricultural Engineering,2012,28(2): 134-141.[张健康,程彦培,张发旺,等.基于多时相遥感影像的作物种植信息提取[J].农业工程学报,2012,28(2): 134-141.]
[4]Wang Jiuling,Huang Jinliang,Wang Lihui,et al.Identification of Sugarcane based on Object-oriented Analysis Using Time-Series HJ CCD data[J].Transactions of the Chinese Society of Agricultural Engineering,2014,30(11): 145-151.[王久玲,黄进良,王立辉,等.面向对象的多时相 HJ 星影像甘蔗识别方法[J].农业工程学报,2014,30(11): 145-151.]
[5]Dudley K L,Dennison P E,Roth K L,et al.A Multi-Temporal Spectral Library Approach for Mapping Vegetation Species Across Spatial And Temporal Phonological Gradients[J].Remote Sensing of Environment,2015,167: 121-134.
[6]Wu Jian,Peng Daoli.Advances in Researches on Hyperspectral Remote Sensing Forestry Information-Extracting Technology[J].Spectroscopy and Spectral Analysis,2011,31(9): 2305-2312.[吴见,彭道黎.高光谱遥感林业信息提取技术研究进展[J].光谱学与光谱分析,2011,31(9): 2305-2312.]
[7]Lin Chuan,Gong Zhaoning,Zhao Wenji,et al.Identifying Typical Plant Ecological Types based on Spectral Characteristic Variables: A Case Study in Wild Duck Lake Wetland,Beijing[J].Acta Ecologica Sinica,2013,33(4):1172-1185.[林川,宫兆宁,赵文吉,等.基于光谱特征变量的湿地典型植物生态类型识别方法——以北京野鸭湖湿地为例[J].生态学报,2013,33(4):1172-1185.]
[8]Bradley B A.Remote Detection of Invasive Plants: A Review of Spectral,Textural and Phonological Approaches[J].Biological invasions,2014,16(7): 1411-1425.
[9]Wang Yuanyuan,Chen Yunhao,Li Jing.Improving Hyperspectral Matching Method through Feature-selection/Weighting based on SVM[J].Spectroscopy and Spectral Analysis,2009,29(3): 735-739.[王圆圆,陈云浩,李京.基于支持向量机 (SVM)特征加权/选择的光谱匹配算法[J].光谱学与光谱分析,2009,29(3): 735-739.]
[10]Zhou Wanhuai,Xie Lijuan,Ying Yibin.Application of Full Spectral Matching Algorithm in Apple Classification[J].Transactions of the Chinese Society of Agricultural Engineering,2013,29(19): 285-292.[周万怀,谢丽娟,应义斌.全光谱匹配算法在苹果分类识别中的应用[J].农业工程学报,2013,29(19): 285-292.]
[11]Xia Junshi,Du Peijun,Feng Yunfeng,et al.Urban Impervious Surface Area Extraction and Analysis based on Hyperspectral Remote Sensing Image[J].Journal of China University of Mining & Technology,2011,40(4): 660-666.[夏俊士,杜培军,逢云峰,等.基于高光谱数据的城市不透水层提取与分析[J].中国矿业大学学报,2011,40(4): 660-666.]
[12]Zhang X,Liao C,Li J,et al.Fractional Vegetation Cover Estimation in Arid and Semi-Arid Environments Using H J-1 Satellite Hyperspectral Data[J].International Journal of Applied Earth Observation and Geoinformation,2013,21: 506-512.〖KG)〗
[13]Feng Weiyi,Chen Qian,He Weiji,et al.A Defogging Method based on Hyperspectral Unmixing[J].Acta Optica Sinica,2015,35 (1): 107-114.[冯维一,陈钱,何伟基,等.基于高光谱图像混合像元分解技术的去雾方法[J].光学学报,2015,35 (1): 107-114.]
[14]Ungar S G,Pearlman J S,Mendenhall J A,et al.Overview of the Earth Observing One (EO-1)Mission[J].IEEE Transactions on Geoscience and Remote Sensing,2003,41(6): 1149-1159.
[15]Tan Bingxiang,Li Zengyuan,Chen Erxue,et al.Preprocessing of EO-1 Hyperion Hyperspectral Data[J].Remote Sensing Information,2005,(6): 36-41.[谭炳香,李增元,陈尔学,等.EO-1 Hyperion 高光谱数据的预处理[J].遙感信息,2005,(6): 36-41.]
[16]Yu Ying,Fan Wenyi,Yang Xiguang.Comparison Analysis of Bad Pixel Repair Methods for EO-1  Hyperion[J].Journal of Northeast Forestry University,2009,37(11):123-124.[于颖,范文义,杨曦光.EO-1Hyperion高光谱数据坏线修复方法的对比分析[J].东北林业大学学报,2009,37(11):123-124.]
[17]Yuan Jinguo,Niu Zheng,Wang Xiping.Atmospheric Correction of Hyperion Hyperspectral Image based on FLAASH[J].Spectroscopy and Spectral Analysis,2009,29(5):1181-1185.[袁金国,牛铮,王锡平.基于FLAASH的Hyperion高光谱影像大气校正[J].光谱学与光谱分析,2009,29(5):1181-1185.]
[18]Xi Zhenyuan,Liu Lijuan,Lu Dengsheng,et al.Mapping of Carya Cathayensis Spatial Distribution with Linear Spectral Mixture Model[J].Scientia Silvae Sinicae,2015,(10):43-52.[奚祯苑,刘丽娟,陆灯盛,等.基于线性混合像元分解技术提取山核桃空间分布[J].林业科学,2015,(10):43-52.]
[19]Li Xiaosong,Gao Zhihai,Li Zengyuan,et al.Estimation Of Sparse Vegetation Coverage in Arid Region based on Hyperspectral Mixed Pixel Decomposition[J].Chinese Journal of Applied Ecology,2010,21(1):152-158.[李晓松,高志海,李增元,等.基于高光谱混合像元分解的干旱地区稀疏植被覆盖度估测[J].应用生态学报,2010,21(1):152-158.]
[20]Li Xunlan.Establishment and Application Research of Citrus Spectral Database[D].Chongqing:Southwest University,2015.[李勋兰.柑橘光谱数据库的建立及应用研究[D].重庆:西南大学,2015.
[21]Tang Yanlin,Huang Jingfeng,Wang Xiuzhen,et al.Comparison of the Characteristics of Hyperspectral and the Red Edge in Rice,Corn and Cotton[J].Scientia Agricultura Sinica,2004,37(1):29-35.[唐延林,黄敬峰,王秀珍等.水稻、玉米、棉花的高光谱及其红边特征比较[J].中国农业科学,2004,37(1):29-35.]
[22]Wu C,Murray A T.Estimating Impervious Surface Distribution by Spectral Mixture Analysis[J].Remote Sensing of Environment,2003,84(4):493-505.
[23]Li Xiaojuan,Gong Zhaoning,Liu Xiaomeng,et al.ENVI Tutorial of Remote Sensing Image Processing[M].Beijing:China Environmental Science Press,2007.[李小娟,宫兆宁,刘晓萌,等.ENVI遥感影像处理教程[M].北京:中国环境科学出版社,2007.]
[1] 王凯,赵军,朱国锋. 基于GF-1遥感数据决策树与混合像元分解模型的冬小麦种植面积早期估算[J]. 遥感技术与应用, 2018, 33(1): 158-167.
[2] 肖昊,王杰. 基于IDL和MATLAB混合编程的两种光谱混合分析方法比较[J]. 遥感技术与应用, 2017, 32(5): 858-865.
[3] 李颖,陈怀亮,李耀辉. 利用夏玉米端元丰度估算夏玉米种植面积的研究[J]. 遥感技术与应用, 2017, 32(5): 913-920.
[4] 王杰,李卫朋. 基于渐进辐射传输模型的雪粒径与积雪覆盖面积反演算法[J]. 遥感技术与应用, 2017, 32(1): 64-70.
[5] 苏远超,孙旭,高连如,陈晓宁. 高光谱影像端元提取算法的进展分析与比较[J]. 遥感技术与应用, 2015, 30(6): 1195-1205.
[6] 杨苏新,张霞,帅通,林卉. 基于混合像元分解的喀斯特石漠化地物丰度估测[J]. 遥感技术与应用, 2014, 29(5): 823-832.
[7] 邓蕾,赵小锋,王慧娜,邱全毅,陈峰. 城市混合像元分解中土壤与不透水面纯像元选取方法的对比研究——以厦门为例[J]. 遥感技术与应用, 2013, 28(6): 1039-1045.
[8] 曹晶晶,卓莉,王芳,陶海燕. 盲信号分离技术在高光谱混合像元分解中的应用[J]. 遥感技术与应用, 2013, 28(3): 488-495.
[9] 顾玲嘉,赵凯,孙健,郑兴明. 被动微波遥感数据超分辨率增强与混合像元分解研究综述[J]. 遥感技术与应用, 2012, 27(1): 1-6.
[10] 李晓雪,安如,吴红,杨仁敏,曲春梅,陆玲,龚天宇. 基于一种改进的多端元混合像元分解方法的三江源中东部地区植被盖度信息的提取[J]. 遥感技术与应用, 2011, 26(3): 383-391.
[11] 任武,葛咏. 遥感影像亚像元制图方法研究进展综述[J]. 遥感技术与应用, 2011, 26(1): 33-44.
[12] 顾玲嘉,赵凯,孙健,郑兴明. 被动微波遥感数据超分辨率增强与混合像元分解研究综述[J]. 遥感技术与应用, 2011, 27(1): 1-7.
[13] 夏俊士, 杜培军, 张海荣, 刘培. 基于遥感数据的城市地表温度与土地覆盖定量研究[J]. 遥感技术与应用, 2010, 25(1): 15-23.
[14] 赵小锋, 邱全毅. 4种混合像元分解方法在沿海丘陵城市地表组分分析中的比较研究[J]. 遥感技术与应用, 2009, 24(6): 737-742.
[15] 梁 娜,何明一. 基于遗传算法的混合像元快速分解及分类算法[J]. 遥感技术与应用, 2007, 22(4): 560-564.