Please wait a minute...
img

官方微信

遥感技术与应用  2017, Vol. 32 Issue (5): 921-930    DOI: 10.11873/j.issn.1004-0323.2017.5.0921
遥感应用     
2015年黄海海域浒苔时空分布及台风“灿鸿”影响研究
孙晓1,吴孟泉1,何福红1,张安定1,赵德恒1,李勃2
(1.鲁东大学 资源与环境工程学院,山东 烟台 264025;
2.招远市海域动态监管中心,山东 烟台 265400)
Temporal and Spatial Distribution of Ulva.prolifera in the Yellow Sea and Influence of Typhoon “CHAN-HOM” in 2015
Sun Xiao1,Wu Mengquan1,He Fuhong1,Zhang Anding1,Zhao Deheng1,Li Bo2#br#
(1.College of Resources and Environmental Engineering;Ludong University,Yantai  264025,China;
2.Maritime Space Dynamic Supervision Center of Zhaoyuan,Yantai 265400,China)
 全文: PDF(11430 KB)  
摘要:
综合利用环境卫星(HJ-1A/1B)数据与MODIS数据,采用NDVI(归一化植被指数)和人工辅助判读方法,针对2015年黄海浒苔爆发过程进行遥感监测,并分析台风“灿鸿”过境对浒苔生长过程及漂移路径的影响。结果表明:①5月10日浒苔最早在江苏盐城东部海域监测到,面积仅有0.831 km2,然后,在东南季风的作用下由南向北逐渐漂移至山东青岛海域,影响面积逐渐扩大;6月下旬覆盖面积达到最大1 752.756 km2;7、8月份浒苔逐渐消退,并在朝鲜南部海湾发现面积达38.791 km2的浒苔分布。黄海海域浒苔经历了“出现—发展—爆发—衰退—消亡”过程;②台风“灿鸿”一定程度上改变了浒苔继续北上的路径,整体向西南漂移,致使浒苔中心南移至连云港东部海域,并推测有部分浒苔漂移至朝鲜南部海湾;③从监测数据看,MODIS和环境卫星(HJ\|1A/1B)两个数据源空间分辨率差异明显,分辨率分别为250 m和30 m,其监测浒苔面积相差约2.26倍,通过建立二者的函数关系,弥补了环境数据短缺现象。
关键词: 黄海;浒苔; HJ-1A/1B;MODIS;NDVI;台风&ldquo灿鸿&rdquo    
Abstract: A recurrent floating green algae bloom was detected in the Yellow Sea since 2007.The Ulva.prolifera is non\|toxic,but the massive accumulations can result in significant environmental damage and cause economic loss to marine industries.In this study,the spatial and temporal patterns of Ulva.prolifera green tides were investigated in the Yellow Sea during 2015 using HJ\|1A/1B and MODIS satellite images by means of NDVI (normalized difference vegetation index)and artificial interpretation.The results showed:(1)A little Ulva.prolifera was discovered firstly in adjacent sea of Yancheng,Jiangsu province in early May with distribution area 0.831 km2.Under the action of the southeast monsoon,Ulva.prolifera was gradually drifted to Shandong peninsula waters from south to north.The influential area and range reached a peak value with 1 752.756 km2 in late June,and gradually subsided from July to August.And Ulva.prolifera about 38.791 km2 was monitored in the South Bay of North Korea.In conclusion,Ulva.prolifera in the Yellow Sea in 2015 has experienced five major processes including “Occur\|Development\|Outbreak\|Recession\|Disappeared”.(2)Typhoon "CHAN\|HOM" certainly influenced the northward pathway of Ulva.prolifera and shifted towards the southwest,resulting in most of Ulva.prolifera moved to the east coast of Lianyungang,and speculated that minority Ulva.prolifera drifted to the South Bay of North Korea.(3)From the monitoring data,the spatial resolution between MODIS and ENVISAT (HJ\|1A / 1B)is difference significantly,250 m and 30 m respectively.A functional relation of the two data with monitoring area difference about 2.26 times was established to make up for the shortage of the environmental satellite (HJ\|1A/1B)images.


Key words: The Yellow Sea;Ulva.prolifera;HJ\    1A/1B;MODIS;NDVI;Typhoon “CHAN\    HOM”
收稿日期: 2016-06-29 出版日期: 2017-11-02
:  TP 79  
基金资助: 国家自然科学基金项目(41471223),山东省自然科学基金项目(ZR2015DM015),烟台市科技项目(2013ZH094)。


作者简介: 孙晓 (1992- )女,山东泰安人,在读硕士研究生,主要从事海洋遥感、空间分析及3S应用研究。Email:sunxiao_ld@163.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
孙晓
吴孟泉
何福红
张安定
赵德恒
李勃

引用本文:

孙晓,吴孟泉,何福红,张安定,赵德恒,李勃 . 2015年黄海海域浒苔时空分布及台风“灿鸿”影响研究[J]. 遥感技术与应用, 2017, 32(5): 921-930.

Sun Xiao,Wu Mengquan,He Fuhong,Zhang Anding,Zhao Deheng,Li Bo. Temporal and Spatial Distribution of Ulva.prolifera in the Yellow Sea and Influence of Typhoon “CHAN-HOM” in 2015. Remote Sensing Technology and Application, 2017, 32(5): 921-930.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2017.5.0921        http://www.rsta.ac.cn/CN/Y2017/V32/I5/921

[1] 汪子豪,秦其明,孙元亨. 基于BP神经网络的地表温度空间降尺度方法[J]. 遥感技术与应用, 2018, 33(5): 793-802.
[2] 王恺宁,王修信,黄凤荣,罗涟玲. 喀斯特城市地表温度遥感反演算法比较[J]. 遥感技术与应用, 2018, 33(5): 803-810.
[3] 石满,陈健,覃帮勇,李盛阳. 天宫二号数据地表温度反演及其在城市群热环境监测中的应用[J]. 遥感技术与应用, 2018, 33(5): 811-819.
[4] 金点点,宫兆宁. 基于Landsat 系列数据地表温度反演算法对比分析—以齐齐哈尔市辖区为例[J]. 遥感技术与应用, 2018, 33(5): 830-841.
[5] 苗翔鹰,苗洪利,张旭东,黄霞凤,王桂忠. 利用星下点干涉相位法提高三维成像高度计测高精度[J]. 遥感技术与应用, 2018, 33(5): 866-872.
[6] 谢旭,陈芸芝. 基于PSO-RBF神经网络模型反演闽江下游水体悬浮物浓度[J]. 遥感技术与应用, 2018, 33(5): 900-907.
[7] 高莎,林峻,马涛,吴建国,郑江华. 新疆巴音布鲁克草原马先蒿光谱特征提取与分析[J]. 遥感技术与应用, 2018, 33(5): 908-914.
[8] 王常颖,田德政,韩园峰,隋毅,初佳兰. 基于属性差决策树的全极化SAR影像海冰分类[J]. 遥感技术与应用, 2018, 33(5): 975-982.
[9] 范锦龙,张晔萍,李昌宝,许文波,刘少杰,薛飞,覃志豪. 风云卫星中分辨率遥感数据几何定位误差分析[J]. 遥感技术与应用, 2018, 33(4): 621-627.
[10] 梁继,褚楠,郑敦勇,彭焕华,张静. 面向道路边坡监测的高分二号应用研究[J]. 遥感技术与应用, 2018, 33(4): 638-645.
[11] 李晨伟,张瑞丝,张竹桐,曾敏 . 基于多源遥感数据的构造解译与分析—以西藏察隅吉太曲流域为例[J]. 遥感技术与应用, 2018, 33(4): 657-665.
[12] 汪航,师茁. 基于MODIS时间序列数据的春尺蠖虫害遥感监测方法研究—以新疆巴楚胡杨为例[J]. 遥感技术与应用, 2018, 33(4): 686-695.
[13] 苗茜,王昭生,王荣,黄玫,孙佳丽. 基于NDVI数据评估O3污染对华北地区夏季植被生长的影响[J]. 遥感技术与应用, 2018, 33(4): 696-702.
[14] 王恒,杨昊翔,张丽. 海上丝绸之路沿线区域植被覆盖变化特征[J]. 遥感技术与应用, 2018, 33(4): 703-712.
[15] 谢军飞,周坚华. 城镇绿化植物群软分类[J]. 遥感技术与应用, 2018, 33(4): 721-730.