Please wait a minute...
img

官方微信

遥感技术与应用
遥感应用     
基于卷积神经网络的遥感沙漠绿地提取方法
田德宇1,2,张耀南1,3 ,赵国辉1,2,3,韩立钦1,2
(1.中国科学院西北生态环境资源研究院,甘肃 兰州 730000;
2.中国科学院大学,北京 100049;
3.中国科学院超级计算兰州分中心,甘肃 兰州 730000)
Convolutional Neural Network for RemoteSensing Plant Cover Extracting
Tian Deyu1,2,Zhang Yaonan1,3,Zhao Guohui1,2,3,Han Liqin1,2
(1.Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China;
2.University of Chinese Academy of Sciences,Beijing 100049,China;
3.Lanzhou Supercomputing Center of Chinese Academy of Sciences,Lanzhou 730000,China)
 全文: PDF(5075 KB)  
摘要:
最先进的(state-of-the-art)机器学习遥感信息提取方法往往通过图像的波段组合、纹理分析构建特征向量,但是这种方法可选的特征有限且需要过多人为干预。通过建立卷积神经网络自动获取多波段遥感图像深层次的特征进行库布齐沙漠中绿地提取实验。训练分类器并进行超参数选择,通过交叉验证和对比分析来检验模型的性能。实验表明:建立的模型预测精度高,泛化能力强,为绿地以及更加复杂的地物信息提取开辟新的思路。
关键词: 卷积神经网络特征向量多波段遥感信息挖掘库布齐沙漠    
Abstract:
The key point of the state-of-the-art machine learning method to extract land information is to construct the features-vector.The existing methods mainly use the spectral features,texture features of remote sensing images to construct the features-vector,however,this method can only get limited features and requires too much human intervention.In the face of the above problems,this paper builds a convolutional neural network model for mining the deep-level features of multi-band remote sensing images and then extract the greenbelt in the Kubuqi Desert.The model was trained and hyperparameter selection was performed.The performance of the model was evaluated by cross validation and comparative analysis between methods.The experimental results show that the model is of high accuracy and good generalization ability.Finally,the test data set was input into the model to predict land cover classes and to do visualization.The importance of this study is to inspire new thinking of better performance of the green land and even more complex information extraction from remote sensing images.
Key words: Convolutional Neural Network    Feature Vector    Multi-band remote sensing    Information mining    Kubuqi desert
收稿日期: 2016-12-17 出版日期: 2018-03-16
:  TP 79  
基金资助: 国家自然科学重点基金项目(91125005/D011004),中国科学院信息化重点项目(INFO-115-D01)资助。
作者简介: 田德宇(1993-),男,内蒙古四子王旗人,硕士研究生,主要从事遥感图像信息提取、寒区地质灾害评价研究。E-mail:tiandy@lzb.ac.cn。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
田德宇
张耀南
赵国辉
韩立钦

引用本文:

田德宇,张耀南,赵国辉,韩立钦. 基于卷积神经网络的遥感沙漠绿地提取方法[J]. 遥感技术与应用, 10.11873/j.issn.1004-0323.2018.1.0151.

Tian Deyu,Zhang Yaonan,Zhao Guohui,Han Liqin . Convolutional Neural Network for RemoteSensing Plant Cover Extracting. Remote Sensing Technology and Application, 10.11873/j.issn.1004-0323.2018.1.0151.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2018.1.0151        http://www.rsta.ac.cn/CN/Y2018/V33/I1/151

[1] 何海清,庞燕,陈晓勇. 面向遥感影像场景的深度卷积神经网络递归识别模型[J]. 遥感技术与应用, 2017, 32(6): 1078-1082.
[2] 肖正清,蔺启忠. 利用正演计算方法分析地形和噪音对多波段遥感数据的影响[J]. 遥感技术与应用, 2000, 15(4): 211-213.