Please wait a minute...
img

官方微信

遥感技术与应用  2018, Vol. 33 Issue (2): 351-359    DOI: 10.11873/j.issn.1004-0323.2018.2.0351
遥感应用     
星载激光雷达在青藏高原湖泊变迁中的应用研究
陈思宇1,2,巩垠熙1,2,梁天刚3
(1.地理国情监测国家测绘地理信息局工程技术研究中心,陕西 西安  710000;
2.国家测绘地理信息局第一航测遥感院,陕西 西安  710000;
3.兰州大学 草地农业科技学院,甘肃 兰州  730010)
Research on Lake Variation in Tibetan Plateau based on Space-borne Laser Radar
Chen Siyu1,2,Gong Yinxi1,2,Liang Tiangang3
(1.National Administration of Surveying,Mapping and Geoinformation Engineering Research Centerof Geographic National Conditions Monitoring,Xi’an 710000,China;2.The First Institute of Photogrammetry and Remote Sensing,Xi’an 710000,China;3.College of Pastoral Agriculture Science and Technology,Lanzhou University,Lanzhou 730010,China)
 全文: PDF(8877 KB)  
摘要:
基于ICESat GLAS数据,结合气温和降水地面观测数据,利用ANUSPLINE空间内插法和Theil-Sen’s中值斜率法,分析探讨HY 2003~2010年青藏高原湖泊水位变化特点及其对气候变化的时空响应特征。结果表明:青藏高原大部分湖泊水位集中在4 500~5 000 m,主要分布在青藏高原的中部和西部地区,该地区湖泊水位变化十分剧烈,部分湖泊水位上升十分明显。高原南部的打加错、羊卓雍错和高原西部的班公错的湖泊水位下降趋势显著。同时,不同流域的湖泊水位随着气温和降水的变化而呈现出不同的变化趋势,湖泊水量的增加除依靠降水的直接补给外,也会受由温度变暖引起的积雪融水增加的影响。
关键词: 青藏高原湖泊水位气候变化    
Abstract: Based on ICESat data and temperature and precipitation from 2003 to 2010 and used ANUSPLINE interpolation method and Theil\|Sen’s method,we analyzed and discussed lake water level change characteristic from 2003 to 2010,as well as the temporal\|spatial response of lake water level to climate changes.the results showed that most of lakes mainly distribute in the central and western region of TP,and their lake water levels are mainly between 4 500 to 5 000 meters.Lake water level of Tak kyel and Yamzhog Yumco in the southern of TP as well as Panggong in the western of TP showed a decreasing trend.Analysis of the relationship between lake water level and climate factor indicated that lake water level in different basin showed different trends because of varied temperature and precipitation.the increasing trend of lake volume was not only dependent on direct supply of precipitation,but also effected by melted water from glaciers and snow due to climate warming.
Key words: Tibet plateau    Lake water level    Climate change
收稿日期: 2017-06-08 出版日期: 2018-05-15
:  TP 79  
基金资助: 陈思宇(1987-),女,甘肃定西人,工程师,主要从事遥感应用研究。Email:15095320573@163.com\.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈思宇
巩垠熙
梁天刚

引用本文:

陈思宇,巩垠熙,梁天刚. 星载激光雷达在青藏高原湖泊变迁中的应用研究[J]. 遥感技术与应用, 2018, 33(2): 351-359.

Chen Siyu,Gong Yinxi,Liang Tiangang. Research on Lake Variation in Tibetan Plateau based on Space-borne Laser Radar. Remote Sensing Technology and Application, 2018, 33(2): 351-359.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2018.2.0351        http://www.rsta.ac.cn/CN/Y2018/V33/I2/351

[1] 孟梦,牛铮. 近30 a内蒙古NDVI演变特征及其对气候的响应[J]. 遥感技术与应用, 2018, 33(4): 676-685.
[2] 周玉科,刘建文. 基于MODIS NDVI和多方法的青藏高原植被物候时空特征分析[J]. 遥感技术与应用, 2018, 33(3): 486-498.
[3] 陈栋栋,赵军. 我国西北干旱区湖泊变化时空特征[J]. 遥感技术与应用, 2017, 32(6): 1114-1125.
[4] 马敏娜,袁文平. 青藏高原总初级生产力估算的模型差异[J]. 遥感技术与应用, 2017, 32(3): 406-418.
[5] 王丽娟,郭铌,王玮,芦亚玲,沙莎. 基于TESEBS模型估算高原地区地表蒸散发[J]. 遥感技术与应用, 2017, 32(3): 507-513.
[6] 何霄嘉,董利苹,曲建升,曾静静. 我国适应气候变化数据发展现状、需求和战略建议[J]. 遥感技术与应用, 2017, 32(3): 585-592.
[7] 黄田进,梁丁丁,贾立,张静潇,卢静,周杰. 青藏高原地区湖泊面积插补迭代自动提取#br#[J]. 遥感技术与应用, 2017, 32(2): 289-298.
[8] 葛莉,习晓环,王成,Khun\-Neay Khuon. ICESat-1/GLAS数据湖泊水位监测研究进展[J]. 遥感技术与应用, 2017, 32(1): 14-19.
[9] 杨志刚,达娃,除多. 近15 a青藏高原积雪覆盖时空变化分析[J]. 遥感技术与应用, 2017, 32(1): 27-36.
[10] 安培浚,高峰,王立伟. 青藏高原冰川、积雪与地质灾害空间观测研究态势分析[J]. 遥感技术与应用, 2016, 31(6): 1223-1230.
[11] 王玉丹,南卓铜,陈浩,吴小波. 基于K 最近邻模型的青藏高原CMORPH日降水数据的订正研究[J]. 遥感技术与应用, 2016, 31(3): 607-616.
[12] 杨成松,车涛,欧阳斌. 青藏高原地表温度时空变化分析[J]. 遥感技术与应用, 2016, 31(1): 95-101.
[13] 肖林,车涛. 青藏高原积雪对气候反馈的初步研究[J]. 遥感技术与应用, 2015, 30(6): 1066-1075.
[14] 唐志光,王建,梁继,李朝奎,王欣. 基于MODIS的青藏高原雪线高度遥感监测[J]. 遥感技术与应用, 2015, 30(4): 767-774.
[15] 李娜,谢虹. 青藏高原NDVI对ENSO事件的响应[J]. 遥感技术与应用, 2014, 29(5): 818-822.