Please wait a minute...
img

官方微信

遥感技术与应用
模型与反演     
Landsat-8 OLI与Sentinel-2 MSI山区遥感影像辐射一致性研究
钟函笑1,2,边金虎1,2,李爱农1
(1.中国科学院,水利部成都山地灾害与环境研究所,四川 成都 610041;
2.中国科学院大学,北京 100049)
Radiometric Consistency between Landsat 8 OLIand Sentinel-2 MSI Imagery in Mountainous Terrain
Zhong Hanxiao1,2,Bian Jinhu1,2,Li Ainong1
(1.Institute of Mountain Hazards and Environment,Chinese Academy of Sciences,Chengdu 610041,China;2.University of Chinese Academy of Sciences,Beijing 100049,China)
 全文: PDF(19191 KB)  
摘要:
受影像获取时间、大气条件、观测角度、传感器波段设置以及山地地形等因素的影响,山区多源、多时相光学遥感卫星影像间的辐射不一致问题较为突出。以Landsat\|8 OLI与Sentinel\|2 MSI为例探究山地多源遥感影像间的辐射一致性,旨在为多源影像在山区的协同应用提供理论支持。选取同期OLI和MSI影像,进行大气校正、BRDF校正、光谱通道校正以及影像间的辐射一致性分析,并研究地形对辐射一致性的影响。结果表明:①未经校正的Landsat\|8 OLI\|L1T与Sentinel\|2 MSI\|L1C反射率影像间的辐射一致性较高(各波段R2均大于0.9);②经过6S大气校正、C因子法BRDF校正,影像间辐射一致性进一步提高(如蓝波段反射率RMSD依次减小22%、10%),但光谱通道校正后一致性并未显著增强;③地形效应导致了影像阴坡、阳坡辐射一致性水平的较大差异(如BRDF校正后SWIR波段阳坡的反射率平均绝对差为0.010、RMSD为0.006 6,阴坡平均绝对差为0.005、RMSD为0.004 3),且阳坡辐射差异随坡度增大而增大,阴坡则相反。因此,在进行多源遥感影像协同之前,需要进行有效的大气校正、BRDF校正以及光谱通道校正。另外,针对山地遥感影像还应开展地形辐射校正以进一步提高影像间的辐射一致性。
关键词: Landsat-8Sentinel-2辐射一致性BRDF校正光谱通道校正山地    
Abstract: The combined use of multi\|sensor/multi\|temporal images provides more opportunities for long\|term land surface monitoring with high resolution and frequency requirements.However,as sensors differ in their orbital,spatial,or spectral configuration,uncertainty was introduced in the radiometric consistency of multi\|sourse images,and that becomes more outstanding in mountainous terrain with the sharp topographic relief.Therefore,a series of radiometric corrections need to be carry out before further application.The objective of this study was to indicate the radiometric consistency of Landsat\|8 OLI and Sentinel\|2 MSI images.Thus the radiometric differences between the corresponding bands of these two images acquired almost simultaneously by OLI and MSI over 2 areas at different latitude was calculated for the TOA reflectance images first.Then several radiometric corrections(atmospheric correction,BRDF correction and bandpass adjustment) were carried out successively and after each of them the radiometric differences were researched again to assess the performance of each correction method.The results first indicate that there is high radiometric consistency between OLI\|L1T and MSI\|L1C images with the R2greater than 0.9 for each band involved.Then higher consistency was found after the 6S atmospheric correction and C\|factor BRDF correction,while no remarkable improve was found after the fixed\|parameter bandpass adjustment.Furthermore,in area with great topographic relief,the radiometric consistency were higher for hillside facing the sun than hillside in shadow (the MAD of SWIR2 band was 0.010 and RMSD was 0.007 in sun\|light area,while the MAD was 0.005 and RMSD was 0.004 in shadowed area).The results point out that proper atmospheric correction,BRDF correction and bandpass adjustment could be used to improve the radiometric consistency,and topographic correction might also be carried out to balance the radiometric consistency differences between different hillsides.
Key words: Landsat-8    Sentinel-2    Radiometric consistency    BRDF correction    Bandpass adjustment    Mountainous terrain
收稿日期: 2017-08-31 出版日期: 2018-07-04
:  TP751  
基金资助: 国家自然科学基金项目“山地典型生态参量遥感反演建模及其时空表征能力研究”(41631180)、“放牧强度遥感表征及其对区域草地NPP遥感估算精度的贡献研究”(41571373)、“山地中分辨率遥感影像时相自适应合成算法研究”(41701432),科技部国家重点研发计划重点专项“山地关键气候变量天—空—地一体化协同观测与应用示范”(2016YFA0600103),中国科学院西部之光青年学者B类项目 “HJ\|1A/B光学卫星山地遥感影像时相自适应融合方法及其应用(Y8R2200200)。
作者简介: 钟函笑(1992-),女,四川成都人,硕士研究生,主要从事山地多源遥感影像时空融合研究。Email:zhonghanxiao15@mails.ucas.ac.cn。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
钟函笑
边金虎
李爱农

引用本文:

钟函笑,边金虎,李爱农. Landsat-8 OLI与Sentinel-2 MSI山区遥感影像辐射一致性研究[J]. 遥感技术与应用, 10.11873/j.issn.1004-0323.2018.3.0428.

Zhong Hanxiao,Bian Jinhu,Li Ainong. Radiometric Consistency between Landsat 8 OLIand Sentinel-2 MSI Imagery in Mountainous Terrain. Remote Sensing Technology and Application, 10.11873/j.issn.1004-0323.2018.3.0428.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2018.3.0428        http://www.rsta.ac.cn/CN/Y2018/V33/I3/428

[1] 韩涛,潘剑君,张培育,曹罗丹. Sentinel-2A与Landsat-8影像在油菜识别中的差异性研究[J]. 遥感技术与应用, 2018, 33(5): 890-899.
[2] 李珊珊,蒋耿明. 基于通用分裂窗算法和Landsat-8数据的地表温度反演研究[J]. 遥感技术与应用, 2018, 33(2): 284-295.
[3] 郝泷,陈永富,刘华,朱雪林,达哇扎西,李伟娜. 基于纹理信息CART决策树的林芝县森林植被面向对象分类[J]. 遥感技术与应用, 2017, 32(2): 386-394.
[4] 吴志杰,何国金,王猛猛,傅娇凤,邹丹. 南方丘陵区植被覆盖度遥感估算与时空变化研究—以福建省永定县为例[J]. 遥感技术与应用, 2016, 31(6): 1201-1208.
[5] 王守志,邢立新,仲波,杨爱霞,张福坤,梁敏. 基于Landsat-8 OLI和GF-1 PMS数据融合的铁染蚀变信息提取[J]. 遥感技术与应用, 2016, 31(5): 950-957.
[6] 李炳亚,潘剑君,夏超,陈昕,隋传嘉. 基于空间位置关系的山地湖泊水体提取方法研究[J]. 遥感技术与应用, 2016, 31(5): 983-993.
[7] 南希,李爱农,陈昱,邓伟. 竖版中国数字山地图(1∶670万)的设计与编制[J]. 遥感技术与应用, 2016, 31(3): 451-458.
[8] 李爱农,尹高飞,靳华安,边金虎,赵伟. 山地地表生态参量遥感反演的理论、方法与问题[J]. 遥感技术与应用, 2016, 31(1): 1-11.
[9] 雷光斌,李爱农,谭剑波,张正健,边金虎,靳华安,赵伟,曹小敏. 基于多源多时相遥感影像的山地森林分类决策树模型研究[J]. 遥感技术与应用, 2016, 31(1): 31-41.
[10] 靳华安,李爱农,边金虎,赵伟,张正健,南希. 西南地区不同山地环境梯度叶面积指数遥感反演[J]. 遥感技术与应用, 2016, 31(1): 42-50.
[11] 赵伟,李爱农,张正健,边金虎,靳华安,尹高飞,南希,雷光斌. 基于Landsat8热红外遥感数据的山地地表温度地形效应研究[J]. 遥感技术与应用, 2016, 31(1): 63-73.
[12] 潘一凡,张显峰,于泓峰,饶俊峰. 联合快舟一号影像纹理信息的城市土地覆盖分类[J]. 遥感技术与应用, 2016, 31(1): 194-202.
[13] 郭加伟,仙巍,李永树,王洪蜀. 基于遥感和模糊数学的矿山地质环境综合评价研究—以红格钒钛磁铁矿区为例[J]. 遥感技术与应用, 2014, 29(1): 82-87.
[14] 任玉环,许清,刘萌萌,刘向龙,吴忠宜,张怀珍,刘亚岚. 四川省芦山“4·20” 7.0级地震公路灾情遥感监测评估[J]. 遥感技术与应用, 2013, 28(4): 549-555.
[15] 王旭丽, 刘学录. 基于RS的祁连山东段山地景观稳定性分析[J]. 遥感技术与应用, 2009, 24(5): 665-669.