Please wait a minute...
img

官方微信

遥感技术与应用  2018, Vol. 33 Issue (3): 530-535    DOI: 10.11873/j.issn.1004-0323.2018.3.0530
遥感应用     
机载LiDAR快速定位高压电塔方法研究
虢韬1,沈平1,时磊1,王伟1,李雪松2,刘文明3,王成2
(1.贵州电网有限责任公司输电运行检修分公司,贵州 贵阳 550002;
2.中国科学院遥感与数字地球研究所,北京 100094;
3.贵州电力设计研究院,贵州 贵阳 550002)
Study on Power Tower Extraction and Fast Positioning from Airborne LiDAR Data
Guo Tao1,Shen Ping1,Shi Lei1,Wang Wei1,Li Xuesong2,Liu Wenming3,Wang Cheng2
(1.Guizhou Power Grid Corp Transmission Operation and Maintenance Branch,Guiyang 550002,China;
2.Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences,Beijing 100094,China;
3.Guizhou Electric Power Design Institute,Guiyang 550002,China)
 全文: PDF(5856 KB)  
摘要:
机载LiDAR已经成为数字电网建设和高压线路安全巡检的重要手段,其中从输电走廊原始海量点云自动、快速、准确地定位电塔是一项基础而又重要的内容。基于线路走廊点云的空间分布特性粗提取电塔点云,然后采用区域增长算法分离每个电塔,并采用最小二乘空间直线拟合法精确定位电塔的空间位置,进而实现电塔点云的自动识别和高精度定位。实验结果表明:该方法在数据处理效率、提取精度和适用性方面都具有一定的稳健性,提取的电塔点云数据的完整度达91.1%;电塔中心位置定位的中误差为13.5 cm;点云密度对电塔提取精度的敏感性分析表明即使对原始点云数据进行一定比例的抽稀,算法的提取结果也可满足实际应用要求。
关键词: 机载激光雷达电塔电力线区域增长最小二乘拟合    
Abstract: Airborne LiDAR has become an important technique for transmission line digitalization,reconstruction and safety inspection.Moreover,accurately and efficiently extracting the position of each tower from massive point clouds is basic and important task for the applications in power industry.In this study,a method was proposed to efficiently extract the point clouds and fast determine the position of power towers using airborne LiDAR data.Firstly,the point clouds of power towers were automatically separated from raw data based on the spatial distribution characteristics of airborne LiDAR data.Secondly,each power tower was efficiently detected using a region\|growing algorithm.Finally,a least square linear fitting method was used to determine the accurate position of each power tower.The new proposed method was applied to several LiDAR data sets in areas with high voltage transmission lines.Results indicated that the integrity of the power towers’ points is up to 91.1%,and the accuracy of center positions is high enough with the medium error of 13.5 cm.Additionally,our study also concluded that the proposed method is robust and applicable even the point density is relatively low.
Key words: Airborne LiDAR    Power tower    Power line    Region-growing    Least squares fitting
收稿日期: 2017-07-03 出版日期: 2018-07-04
:  P235  
基金资助: 国家科技部重大仪器研制专项“机载双频激光雷达产品开发和应用”(2013YQ120343)。
作者简介: 虢涛(1983-),男,湖南长沙人,高级工程师,主要从事输电线路运行与维护等方面的研究。Email:79169957@qq.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
虢韬
沈平
时磊

引用本文:

虢韬,沈平,时磊. 机载LiDAR快速定位高压电塔方法研究[J]. 遥感技术与应用, 2018, 33(3): 530-535.

Guo Tao,Shen Ping,Shi Lei. Study on Power Tower Extraction and Fast Positioning from Airborne LiDAR Data. Remote Sensing Technology and Application, 2018, 33(3): 530-535.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2018.3.0530        http://www.rsta.ac.cn/CN/Y2018/V33/I3/530

[1] 梁茜茜,张汉德,孙根云,王鹏. 基于机载激光雷达数据的海岸带水域提取方法[J]. 遥感技术与应用, 2018, 33(1): 136-142.
[2] 秦海明,王成,习晓环,聂胜. 机载激光雷达测深技术与应用研究进展[J]. 遥感技术与应用, 2016, 31(4): 617-624.
[3] 李文娟,赵传燕,别强,高婵婵,高云飞. 基于机载激光雷达数据的森林结构参数反演[J]. 遥感技术与应用, 2015, 30(5): 917-924.
[4] 穆喜云,张秋良,刘清旺,庞勇,胡凯龙. 基于激光雷达的大兴安岭典型森林生物量制图技术研究[J]. 遥感技术与应用, 2015, 30(2): 220-225.
[5] 曹林,许子乾,代劲松,王靖琦,羌鑫林,佘光辉. 基于LiDAR和CCD数据的地形与建筑提取方法优化及精度评价[J]. 遥感技术与应用, 2014, 29(1): 130-137.
[6] 黎荆梅,周梅,李传荣. 阵列推扫式机载激光雷达三维点云解算方法研究[J]. 遥感技术与应用, 2013, 28(6): 1033-1038.
[7] 王 华,韩祖杰,王志敏. 一种高分辨率影像上铁路中心线提取的方法[J]. 遥感技术与应用, 2013, 28(5): 761-765.
[8] 唐菲菲,阮志敏,刘星,张亚利. 基于机载激光雷达数据识别单株木的新方法[J]. 遥感技术与应用, 2011, 26(2): 196-201.
[9] 周梦维, 柳钦火, 刘强, 肖青. 全波形激光雷达和航空影像联合的地物分类[J]. 遥感技术与应用, 2010, 25(6): 821-827.
[10] 周淑芳,李增元,范文义,庞 勇,陈尔学,李晓松. 基于机载激光雷达数据的DEM获取及应用[J]. 遥感技术与应用, 2007, 22(3): 356-360.
[11] 刘 征. 基于激光雷达地形测绘建立DEM模型[J]. 遥感技术与应用, 2002, 17(5): 264-268.