Please wait a minute...
img

官方微信

遥感技术与应用  2018, Vol. 33 Issue (4): 573-583    DOI: 10.11873/j.issn.1004-0323.2018.4.0573
GEE专栏     
基于GEE平台的1990年以来北京市土地变化格局及驱动机制分析
胡云锋1,商令杰2,张千力1,王召海2
(1.中国科学院地理科学与资源研究所 资源环境信息系统国家重点实验室 北京 100101;
2.山东师范大学 地理与环境学院,山东 济南 250014)
Land Change Patterns and Driving Mechanism in Beijing since 1990 based on GEE Platform
Hu Yunfeng1,Shang Lingjie2,Zhang Qianli1,Wang Zhaohai2
(1.State Key Laboratory of Resources and Environmental Information System,Institute of Geographic Sciences
and Natural Resources Research,Chinese Academy of Sciences,Beijing 100101,China;
2.College of Geography and Environment,Shandong Normal University,Shandong Jinan 250014,China)
 全文: PDF(10366 KB)  
摘要:
针对传统的遥感影像解译速度缓慢、效率较低、人力物力需求量大等问题,基于谷歌地球引擎(Google Earth Engine,GEE)平台,利用Landsat TM/OLI遥感影像,采用分类回归树(Classification and Regression Tree,CART)方法,对1990~2016年北京市土地覆被/土地利用变化(LUCC,Land Use and Land Cover Change)开展了遥感解译研究,分析了北京市土地覆被/土地利用时空动态变化特征和耕地、人造地表面积变化的驱动机制。研究表明:①GEE在区域尺度遥感数据分析和处理等方面具有方便快捷的优势。②CART方法进行遥感分类精度较高,研究所得的6期土地覆被/利用数据产品与训练样本交叉验证的学习精度均在93%以上,方法可靠有效。2010年的分类产品与测试样本混淆矩阵的验证精度为88.67%,Kappa系数为0.86。2010年的分类产品与GlobeLand30\|2010数据的空间一致性为74.0%,其中林地一致性高达84.28%;两套产品中,人造地表、草地和水体面积比重相差不足1%,各地类面积构成一致性较高。③北京市主要土地类型为耕地、林地和人造地表,面积比重为90%左右;1990~2016年期间人造地表和林地面积呈增加态势,耕地和水体呈萎缩态势,其中,人造地表面积增加1 371 km2,增幅高达87%以上,耕地萎缩幅度近40%;1990~2016年北京市平原地区人造地表由圈层状的“摊大饼”扩张态势向“遍地开花”扩张态势转变;人造地表的扩张主要通过对耕地的侵占实现。人口快速增长、经济快速发展以及政策等社会经济发展因素驱动北京市土地覆被/土地利用的演化进程。
关键词: GEECART遥感土地解译土地利用与土地覆被时空格局北京    
Abstract: Land-cover and land-use dynamics is a key component for global change,and it is a significant form of the impact of human activities on physical environment.Basing Google Earth Engine platform and Classification And Regression Tree method,selected seven types of cultivated land,forest,grassland,wetland,water body,artificial surface and bare land as classification system,the paper used Landsat 5 TM and Landsat 8 OLI images to interpret the land\|cover and land\|use since 1990 of Beijing.Simultaneously,the paper analyzed and summarized the character of land\|use changing and driving force.The results show that:(1) GEE has outstanding advantages in remote sensing data analysis and processing at regional scales.(2) The CART method has high accuracy of remote sensing classification,and the overall accuracy of validation of 6 land cover products is above 93%.The spatial consistency of 2010 products and GlobeLand30\|2010 data showed that the spatial consistency ratios of woodland,water body and cultivated land were 84.28%,74.75%and 73.56% respectively.The spatial consistency of the distribution is 74.0%.(3) The main land types in Beijing were cultivated land,woodland and artificial surface,and the area accounted for about 90%.During the period from 1990 to 2016,the artificial surface and woodland area increased,and the cultivated land and water were shrinking.The artificial surface area increase of 1 371 km2,and cultivated land shrinkage 40%;On Beijing plain area,artificial surface by the circle of “spread pie” expansion trend to “blossom everywhere” expansion trend;The expansion of the artificial surface is mainly achieved through the encroachment of cultivated land.We constructed a multidimensional stepwise linear equation model to analyze the driving force of land type change,indicated that rapid population growth,rapid economic development,government\|related policies and other socio\|economic development factors jointly drive the Beijing land-cover/land-use evolution process.
Key words: Google Earth Engine(GEE);CART;Landsat Image Classification;Land use and Land cover;Spatial\    temporal characteristic;Beijing
收稿日期: 2017-08-26 出版日期: 2018-09-08
基金资助: 国家重点研发计划(2016YFB0501502,2016YFC0503701 ),中科院战略先导项目A类 (XDA19040301,XDA20010202),高分专项(00-Y30B14-9001-14/16)。
作者简介: 胡云锋(1974-),男,江西赣州人,博士,副研究员,主要从事土地覆被/土地利用变化及区域生态和可持续发展研究。Email:huyf@lreis.ac.cn。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
胡云锋
商令杰
张千力
王召海

引用本文:

胡云锋,商令杰,张千力,王召海. 基于GEE平台的1990年以来北京市土地变化格局及驱动机制分析[J]. 遥感技术与应用, 2018, 33(4): 573-583.

Hu Yunfeng,Shang Lingjie,Zhang Qianli,Wang Zhaohai. Land Change Patterns and Driving Mechanism in Beijing since 1990 based on GEE Platform. Remote Sensing Technology and Application, 2018, 33(4): 573-583.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2018.4.0573        http://www.rsta.ac.cn/CN/Y2018/V33/I4/573

[1]Liu Jiyuan,Kuang Wenhui,Zhang Zengxiang,et al.Spatiotemporal Characteristics,Patterns and Causes of Land Use Changes in China Since the Late 1980 s[J].Acta Geo Graphica Sinica,2014,69(1):3-14.[刘纪远,匡文慧,张增祥,等.20世纪80年代末以来中国土地利用变化的基本特征与空间格局[J].地理学报,2014,69(1):3-14.] [2]Chen Jun,Chen Jin,Liao Anping,et al.Concepts and Key Techniques for 30 m Global Land Cover Mapping[J].Acta Geodaetica et Cartographica Sinica,2014,43(6):551-557.[陈军,陈晋,廖安平,等.全球30 m地表覆盖遥感制图的总体技术[J].测绘学报,2014,43(6):551-557.] [3]Qian Xiyuan,Shao Zhiqing.ISODATA based Fuzzy Analysis Algorithm and its Application[J].Computer Engineering and Applications,2004,40(15):70-71.[钱夕元,邵志清.模糊ISODATA聚类分析算法的实现及其应用研究[J].计算机工程与应用,2004,40(15):70-71.] [4]Zhang Rui,Ma Jianwen.State of the Art on Remotely Sensed Data Classification based on Support Vector Machines[J].Advances in Earth Science,2009,24(5):555-562.[张睿,马建文.支持向量机在遥感数据分类中的应用新进展[J].地球科学进展,2009,24(5):555-562.] [5]Luo Jiancheng ,Zhou Chenghu ,Leung Yee,et al.Support Vector Machine for Spatial Feature Extraction and Classification of Remotely Sensed Imagery[J].Journal of Remote Sensing,2002,6(1):50-55.[骆剑承,周成虎,梁怡,等.支撑向量机及其遥感影像空间特征提取和分类的应用研究[J].遥感学报,2002,6(1):50-55.] [6]Jia Yonghong,Application of Artificial Neural Network to Classification of Multi-source Remote Sensing Imagery[J].Bulletin of Surveying and Mapping,2000,(7):7-8.[贾永红.人工神经网络在多源遥感影像分类中的应用[J].测绘通报,2000,(7):7-8.] [7]Li Shihua,Wang Jinliang ,Bi Yan,et al.A Review of Methods for Classification of Remote Sensing Images[J].Remote Sensing for Land & Resources ,2005,64(2):1-6.[李石华,王金亮,毕艳,等.遥感图像分类方法研究综述[J].国土资源遥感,2005,64(2):1-6.] [8]Li Shuang,Qian Lexiang,Ding Shengyan.Study on Methods for Extracting Land Cover Thematic Information from Remote Sensing Image[J].China Land Science,2002,16(2):30-33.[李爽,钱乐祥,丁圣彦.遥感影像土地覆盖(LC)专题信息提取方法研究[J].中国土地科学,2002,16(2):30-33.] [9]Ryszard S,Michalski,Zhu Ming.Machine Learning and Data Mining:Methods and Applications[M].Beijing:Electronic Industry Press,2004.[Ryszard S.Michalski,朱明.机器学习与数据挖掘:方法和应用[M].北京:电子工业出版社,2004.] [10]Breiman.Classification and Regression Trees[M].New York:Wadsworth International Group,1984. [11]Torbick N,Ledoux L,Salas W,et al.Regional Mapping of Plantation Extent Using Multisensor Imagery[J].Remote Sensing,2016,8(3):236. [12]Zhao Ping,Fu Yunfei,Zheng Liugen,et al.Cart-based Land Use/cover Classification of Remote Sensing Images[J].Journal of Remote Sensing,2005,9(6):708-716.[赵萍,傅云飞,郑刘根,等.基于分类回归树分析的遥感影像土地利用/覆被分类研究[J].遥感学报,2005,9(6):708-716.] [13]Chen Yun,Dai Jinfang,Li Junjie.CART-based Decision Tree Classifier Using Multifeature of Image and Its Application,Geography and Geo-Information Science,2008,24(2):33-36.[陈云,戴锦芳,李俊杰.基于影像多种特征的CART决策树分类方法及其应用[J].地理与地理信息科学,2008,24(2):33-36.] [14]Wang Jiuzhong,Tian Haifeng,Wu Mingquan,et al.Rapid Mapping of Winter Wheat in Henan Province[J].Journal of Geo-Information Science,2017,19(6):846-853.[王九中,田海峰,邬明权,等.河南省冬小麦快速遥感制图[J].地球信息科学学报,2017,19(6):846-853.] [15]Johansen K,Phinn S,Taylor M.Mapping Woody Vegetation Clearing in Queensland,Australia from Landsat Imagery Using the Google Earth Engine[J].Remote Sensing Applications:Society and Environment,2015,1:136-49. [16]Padarian J,Minasny B,Mcbratney A B.Using Google’s Cloud-based Platform for Digital Soil Mapping[J].Computer Geoscience,2015,83:80-88. [17]He Chunyang,Shi Peijun,Chen Jin,et al.A Study on Land Use/Cover Change in Beijing Area[J].Geographical Research,2001,20(6):679-687.[何春阳,史培军,陈晋,等.北京地区土地利用/覆盖变化研究[J].地理研究,2001,20(6):679-687]. [18]Han Huiran,Yang Chengfeng,Song Jinping.The Spatial-temporal Characteristic of Land Use Change in Beijing and Its Driving Mechanism[J].Economic Geography,2015,35(5):148-154,197.[韩会然,杨成凤,宋金平.北京市土地利用变化特征及驱动机制[J].经济地理,2015,35(5):148-154,197]. [19]Brovelli M,Molinari M,Hussein E,et al.The First Comprehensive Accuracy Assessment of GlobeLand30 at a National Level:Methodology and Results[J].Remote Sensing,2015,7(4):4191-4212. [20]Huang Yabo,Liao Shunbao.Regional Accuracy Assessments of the First Global Land Cover Dataset at 30-meter Resolution:A Case Study of Henan Province[J].Geographical Research,2016,35(8):1433-1446.[黄亚博,廖顺宝.首套全球30m分辨率土地覆被产品区域尺度精度评价——以河南省为例[J].地理研究,2016,35(8):1433-1446.] [21]Dai Zhaoxin,Hu Yunfeng,Zhang Qianli.Agreement Analysis of Muli_source Land Cover Products Derived from Remote Sensing in South America[J].Remote Sensing Information,2017,32(2):137-148.[戴昭鑫,胡云锋,张千力.多源卫星遥感土地覆被产品在南美洲的一致性分析[J].遥感信息,2017,32(2):137-148.] [22]Lu Nan,Zhang Weijun,Chen Lijun,et al.Estimation of Large Regional Urban and Rural Population Density based on the Differences of Population Distribution between Urban and Rural:Take Shandong Provinceas Exampl[J].Acta Geodaetica et Cartographica Sinica,2015,44(12):1384-1391.[鲁楠,张委伟,陈利军,等.顾及城乡差异的大区域人口密度估算——以山东省为例[J].测绘学报,2015,44(12):1384-1391.] [23]Chen Jun,Chen Lijun,Li Ran,et al.Spatial Distribution and Ten Years Change of Global Built-up Areas Derived from GlobeLand 30[J].Acta Geodaetica et Cartographica Sinica,2015,(11):1181-1188.[陈军,陈利军,李然,等.基于GlobeLand30的全球城乡建设用地空间分布与变化统计分析[J].测绘学报,2015,(11):1181-1188.] [24]Yang Yang,Ma Xinyue,He Chunyang.The Loss Process of Cultivated Land based on GlobeLand 30:A Case Study of Bohai Rim[J].China Land Sciences,2016,30(7):72-79,97.[杨洋,麻馨月,何春阳.基于GlobeLand 30的耕地资源损失过程研究——以环渤海地区为例[J].中国土地科学,2016,30(7):72-79,97.] [25]Li Jinlian,Liu Xiaomei,Li Hengpeng.Extraction of Texture Feature and Identification Method of Land Use Information from SPOT 5 Image[J].Journal of Remote Sensing,2006,10(6):926-931.[李金莲,刘晓玫,李恒鹏.SPOT5影像纹理特征提取与土地利用信息识别方法[J].遥感学报,2006,10(6):926-931.] [26]Parmenter A W,Hansen A,Kennedy R E,et al.Land Use and Land Cover Change in the Greater Yellowstone Ecosystem:1975~1995[J].Ecological Applications,2003,13(3):687-703. [27]Romo-Leon J R,Van Leeuwen W J D,Castellanos-Villegas A.Using Remote Sensing Tools to Assess Land Use Transitions in Unsustainable Arid Agro-ecosystems[J].Journal of Arid Environments,2014,10(6):27-35. [28]Shao Y,Lunetta R S.Comparison of Support Vector Machine,Neural Network,and CART Algorithms for the Land-cover Classification Using Limited Training Data Points[J].ISPRS Journal of Photogrammetry and Remote Sensing,2012,70:78-87. [29]Waheed T,Bonnell R B,Prasher S O,et al.Measuring Performance in Precision Agriculture:CART-A Decision Tree Approach[J].Agricultural Water Management,2006,84(1-2):173-185. [30]Hu Yunfeng,Zhang Qianli,Dai Zhaoxin,et al.Agreement Analysis of Multi-sensor Satellite Remote Sensing derived Land Cover Products in the Europe Continent[J].Geographical Research,2015,34(10):1839-1852.[胡云锋,张千力,戴昭鑫.多源遥感土地覆被产品在欧洲地区的一致性分析[J].地理研究,2015,34(10):1839-1852.]
[1] 刘畅,李震,张平,田帮森,周建民. 基于Google Earth Engine评估新疆西南部MODIS积雪产品[J]. 遥感技术与应用, 2018, 33(4): 584-592.
[2] 张滔,唐宏. 基于Google Earth Engine的京津冀2001~2015年植被覆盖变化与城镇扩张研究[J]. 遥感技术与应用, 2018, 33(4): 593-599.
[3] 郝斌飞,韩旭军,马明国,刘一韬,李世卫. Google Earth Engine在地球科学与环境科学中的应用研究进展[J]. 遥感技术与应用, 2018, 33(4): 600-611.
[4] 吕利利,颉耀文,黄晓君,张秀霞,李汝嫣. 基于CART决策树分类的沙漠化信息提取方法研究[J]. 遥感技术与应用, 2017, 32(3): 499-506.
[5] 郝泷,陈永富,刘华,朱雪林,达哇扎西,李伟娜. 基于纹理信息CART决策树的林芝县森林植被面向对象分类[J]. 遥感技术与应用, 2017, 32(2): 386-394.
[6] 张文婷,金可懿,宋开山,杭艳红. 基于多端元混合光谱模型与Landsat影像的北京不透水层动态研究[J]. 遥感技术与应用, 2015, 30(2): 321-330.
[7] 史世莲,章文波,王国燕. 北京地区植被盖度提取及其分布变化研究[J]. 遥感技术与应用, 2014, 29(5): 866-872.
[8] 周会珍, 汪爱华, 李 丽, 迟耀斌, 王智勇, 闫 军. 基于北京一号小卫星的北京及周边五大流域地表水资源监测与分析[J]. 遥感技术与应用, 2010, 25(2): 195-201.
[9] 陈涛, 牛瑞卿, 李平湘, 张良培. 基于人工神经网络的植被覆盖遥感反演方法研究[J]. 遥感技术与应用, 2010, 25(1): 24-30.
[10] 王中挺,陈良富,张莹,韩冬,顾行发. 利用MODIS数据监测北京地区气溶胶[J]. 遥感技术与应用, 2008, 23(3): 284-288.
[11] 王 茜, 张增祥, 刘 斌, 牟凤云, 王 姣. “北京一号”小卫星数据在天津市土地利用动态变化监测中的应用[J]. 遥感技术与应用, 2006, 21(6): 502-506.
[12] 杨 娟, 陈洪滨, 王开存, 王振会. 利用MODIS卫星资料分析北京地区地表反照率时空分布及变化特征[J]. 遥感技术与应用, 2006, 21(5): 403-406.
[13] 张兆明, 何国金, 肖荣波, 王威, 欧阳志云. 利用TM6数据反演陆地表面温度新算法研究[J]. 遥感技术与应用, 2005, 20(6): 547-550.