Please wait a minute...
img

官方微信

遥感技术与应用  2018, Vol. 33 Issue (4): 584-592    DOI: 10.11873/j.issn.1004-0323.2018.4.0584
GEE专栏     
基于Google Earth Engine评估新疆西南部MODIS积雪产品
刘畅1,2,李震1,张平1,田帮森1,周建民1#br#
(1.中国科学院遥感与数字地球研究所,北京  100094;
2.中国科学院大学,北京  100049)
Evaluation of MODIS Snow Products in Southwestern Xinjiang Using the Google Earth Engine
Liu Chang1,2,Li Zhen1,Zhang Ping1,Tian Bangsen1,Zhou Jianmin1#br#
(1.Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences,Beijing 100094,China;2.University of Chinese Academy of Sciences,Beijing 100049,China)
 全文: PDF(5463 KB)  
摘要:
Google Earth Engine(GEE)是一种基于云建立的地理空间处理平台,可以针对地理空间数据进行分析,实现全球范围内海量遥感数据的并行处理,为遥感大数据、大区域研究提供支持。MODIS积雪覆盖制图是利用MODIS资料建立的全球积雪覆盖产品,已广泛应用于区域乃至全球的气候与环境监测中。GEE云平台存储着百万景遥感影像,其中包括覆盖全球的MODIS逐日积雪产品MOD10A1 V5数据和Landsat数据。以新疆西南部3个研究区为例,选取GEE云计算平台存储的Landsat数据,应用NDSI提取积雪范围作为地表覆盖真值,对MOD10A1展开精度评估。结果表明:2000~2016年新疆西南部积雪季MOD10A1的平均总体准确率达82%,平均误判率为2.9%,平均漏判率为58.8%。在晴空条件下,MOD10A1总体准确率可达98%,不同区域的地形及云量是影响MOD10A1精度评估的主要因素。GEE云计算平台可以快速有效地筛选高质量无云的Landsat数据,对全球范围内积雪区的MOD10A1进行精度评估,以在线地图的形式直观显示误判和漏判区域,并利用GEE提供的简单云分函数计算区域云量,使云量对MOD10A1积雪分类精度的影响更具区域代表性。

 
关键词: GEE云平台MOD10A1积雪产品精度评估    
Abstract: Google Earth Engine(GEE) is a cloud\|based geospatial processing platform that can analyze geospatial data to achieve parallel processing of massive remote sensing data on a global scale,providing support for remote sensing big data and large\|area research.MODIS snow cover mapping is a global snow cover product established using MODIS data and has been widely used in regional and global climate and environmental monitoring.In the GEE,millions of remote sensing images are stored,including MODIS daily snow products MOD10A1 V5 data and Landsat data.Taking the three research areas in southwestern Xinjiang as examples,the Landsat stored by the GEE were selected,and the NDSI was used to extract the snow cover as the true value of the land cover to evaluate the MOD10A1 accuracy.The results show that the average overall accuracy of MOD10A1 in the snow cover season in southwestern Xinjiang during the period from 2000 to 2016 is 82%,the average misjudgment rate is 2.9%,and the average missed rate is 58.8%.The overall accuracy of MOD10A1 can reach 98% under the clear sky conditions.The accuracy of MOD10A1 is effected by the terrain conditions and cloud cover in different regions.Therefore,the GEE can quickly and effectively filter high quality cloudless Landsat images,and evaluate the accuracy of the MOD10A1 in the snow area around the global regions,displaying intuitively the misjudgment and missed areas in the form of online maps.Meanwhile,GEE provides the Landsat simple cloud score function to calculate the regional cloud cover,which makes the influence of cloud cover on the MOD10A1 accuracy assessment more regionally representative.
Key words: Google Earth Engine    MOD10A1    Accuracy assessment
收稿日期: 2018-03-27 出版日期: 2018-09-08
基金资助: 科技基础资源调查专项“中国积雪时空分布特性遥感调查”。
作者简介: 刘畅(1995-),女,山东济南人,硕士研究生,主要从事积雪遥感研究。Email:liuc5@radi.ac.cn。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘畅
李震
张平
田帮森
周建民

引用本文:

刘畅,李震,张平,田帮森,周建民. 基于Google Earth Engine评估新疆西南部MODIS积雪产品[J]. 遥感技术与应用, 2018, 33(4): 584-592.

Liu Chang,Li Zhen,Zhang Ping,Tian Bangsen,Zhou Jianmin. Evaluation of MODIS Snow Products in Southwestern Xinjiang Using the Google Earth Engine. Remote Sensing Technology and Application, 2018, 33(4): 584-592.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2018.4.0584        http://www.rsta.ac.cn/CN/Y2018/V33/I4/584

[1] 冉有华,李文君,陈贤章. TM图像土地利用分类精度验证与评估—以定西县为例[J]. 遥感技术与应用, 2003, 18(2): 81-86.