Please wait a minute...
img

官方微信

遥感技术与应用  2018, Vol. 33 Issue (6): 1027-1029    DOI: 10.11873/j.issn.1004-0323.2018.6.1017
积雪遥感专栏     
东北地区森林积雪的微波辐射亮温模拟分析
王广蕊1,2,李晓峰1,3,赵凯1,3,姜涛1,3,郑兴明1,3  杨建卫1,2,李雷1,3,靳梦杰1,2,武黎黎4
(1.中国科学院东北地理与农业生态研究所,吉林 长春 130102;
2.中国科学院大学,北京 100049;
3.中国科学院长春净月潭遥感实验站,吉林 长春 130102;
4.信阳师范学院地理科学学院,河南 信阳 464000)
Analysis of the Microwave Brightness Temperature Simulations of Snow-coverd Forest Areas in Northeast China
Wang Guangrui1,2,Li Xiaofeng1,3,Zhao Kai1,3,Jiang Tao1,3,Zheng Xingming1,3,Yang Jianwei1,2,Li Lei1,3,Jin Mengjie1,2,Wu Lili4
(1.Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences,Changchun 130102,China;
2.University of Chinese Academy of Sciences,Beijing 100049,China;
3.Changchun Jingyuetan Remote Sensing Experiment Station,Chinese Academy of Sciences,Changchun 130102,China;
4.School of Geographic Sciences,Xinyang Normal University,Xinyang 464000,China)
 全文: PDF(7279 KB)  
摘要:

微波辐射亮温正向模拟是辐射传输模型反演积雪参数的关键步骤之一。以HUT模型为基础,针对森林冠层微波透过率这一关键的模型输入参数,在东北大小兴安岭典型森林积雪区进行了14个子区域(10 km*10 km)的地基遥感观测和森林参数取样观测实验,分别利用地基微波辐射计实测和森林材积量回归两种不同参数获取方法,得到实验观测区冬季森林透过率,并模拟了星载微波辐射计探测亮温(T simu B)。通过对两种参数获取方法模拟亮温的相关性分析,说明在K波段水平极化条件下森林存在体散射效应(相关系数R2≤0.37),而Ka波段双极化和K波段垂直极化条件下,森林存在很弱或无体散射效应(相关系数R2≥0.53)。在此基础上,将T simu B与FY3C MWRI观测的微波辐射亮温进行了差值比较,以MWRI的定标精度约以2 K为基准,提出了以偏差|Δ|≤3·6 K为一致性判据准则。在K波段水平极化(H)与垂直极化(V)辐射计模拟的一致性为79%、82%,Ka波段的H和V为43%、50%;材积量模拟亮温的一致性是K波段H和V为57%、86%,Ka波段的H和V均为64%。结果表明:在HUT模型模拟森林积雪系统微波辐射亮度温度时,Ka波段积雪层散射引起的不确定性大于K波段森林散射引起的不确定性。通过数据分析,提出了HUT模型的适用性及东北地区森林—积雪真实性检验场的选址依据。

关键词: 积雪亮温模拟HUT模型森林透过率
    
Abstract: Retrieving accurate quantitative snow parameters in forested regions is still a difficult problem for decades.The key to solve this problem is to improve the understanding of the physical mechanisms of the microwave radiation transfer process of forest-snow system.Forward simulation of microwave radiation brightness temperature is one of the crucial steps in retrieving snow parameters from radiative transfer model.To further comprehend the physical process of microwave radiation transfer of forest-snow system,ground-based remote sensing observation experiment 14 subregions (10 km×10 km) of the typical snow-covered forest areas in Daxing’anling and Xiaoxing’anling regions were carried out.The forest microwave transmissivity as animportant input parameter were acquired by two different methods,one is using ground-based microwave radiometer to observe(i.e.radiometer-simulation method) and the other is through an empirical regression formula to calculate with tree volume sampled data(i.e.volume-simulation method).And the detected brightness temperature of spaceborne microwave radiometer is simulated by HUT radiative transfer model(i.e.T simu B).The correlation analysis of the simulated result shows that there is a volume scattering effect(correlation coefficient R2≤0.37)in the forest under the K-band horizontal polarization condition,while under the Ka-band dual polarization and K\|band vertical polarization conditions,the forest volume scattering effect almost does not exist(correlation coefficient R2≥0.53).On this basis,the difference between the simulated brightness temperature T simu B and that detected by FY3C MWRI is compared.based on the calibration accuracy( of MWRI,the deviation |Δ|≤3 K is proposed as the consensus criterion to evaluation model simulation results.In radiometer-simulationprocess,the consistency of horizontal polarization (H) and vertical polarization (V) in K-band is 79%and 82%,respectively;and that of H and V in Ka-band is 43% and 50%,respectively.In volume-simulation process,the consistency of H and V in K-band is 57% and 86%,respectively,and that of H and V in Ka-band is both 64%.These results show that the uncertainty caused by snow cover scattering is greater than that caused by forest scattering when the HUT model is used to simulate the brightness temperature of microwave radiation in forest-snow system.based on the above analysis,the applicability of HUT model and the selection principlesofground-truthvalidationsiteforsnowcovered forest areas in Northeast China are put forward.
 
Key words: Snow    Brightness temperature simulation    HUT model    Forest transmissivity
收稿日期: 2018-07-29 出版日期: 2019-01-29
ZTFLH:     
基金资助: 国家自然科学基金项目“东北地区森林下雪深被动微波遥感反演的关键影响参数观测与研究”(41471289),科技部国家科技基础资源调查专项“中国积雪特性及分布调查”(2017FY100500),国家自然科学基金青年项目“基于雪粒径演化过程的被动微波遥感雪深反演算法研究”(41701395)。
作者简介: 王广蕊(1991-),女,山东枣庄人,博士研究生,主要从事积雪遥感研究。Email:wgrui@yahoo.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

王广蕊, 李晓峰. 东北地区森林积雪的微波辐射亮温模拟分析[J]. 遥感技术与应用, 2018, 33(6): 1027-1029.

Wang Guangrui, Li Xiaofeng. Analysis of the Microwave Brightness Temperature Simulations of Snow-coverd Forest Areas in Northeast China. Remote Sensing Technology and Application, 2018, 33(6): 1027-1029.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2018.6.1017        http://www.rsta.ac.cn/CN/Y2018/V33/I6/1027

[1] 李长春, 徐轩, 包安明, 刘雪峰, 杨文攀.  基于FY3B-MWRI数据新疆区域积雪深度反演[J]. 遥感技术与应用, 2018, 33(6): 1030-1036.
[2] 陈鹤, 车涛, 戴礼云. 基于FY-MWRI的中国西部被动微波积雪判识算法[J]. 遥感技术与应用, 2018, 33(6): 1037-1045.
[3] 王轩, 郝晓华, 王建, 车涛, 李弘毅, 邵东航. 中国地区AVHRR长时间序列积雪范围产品精度评估[J]. 遥感技术与应用, 2018, 33(6): 994-1003.
[4] 赵宏宇, 郝晓华, 郑照军, 王建, 李弘毅, 黄广辉, 邵东航, 王轩, 高扬, 雷华锦. 基于FY-3D/MERSI-Ⅱ的积雪面积比例提取算法[J]. 遥感技术与应用, 2018, 33(6): 1004-1016.
[5] 刘畅,李震,张平,田帮森,周建民. 基于Google Earth Engine评估新疆西南部MODIS积雪产品[J]. 遥感技术与应用, 2018, 33(4): 584-592.
[6] 拉巴卓玛,次珍. 2002~2015年西藏雅鲁藏布江流域积雪变化及影响因子分析研究[J]. 遥感技术与应用, 2018, 33(3): 508-519.
[7] 张帅,师春香,梁晓,贾炳浩,吴捷. 风云三号积雪覆盖产品评估[J]. 遥感技术与应用, 2018, 33(1): 35-46.
[8] 胡瑞,肖鹏峰,冯学智,张学良. 玛纳斯河流域积雪区GF-1卫星图像辐射质量比较[J]. 遥感技术与应用, 2018, 33(1): 47-54.
[9] 唐志光,王建,王欣,彭焕华,梁继. 近15年天山地区积雪时空变化遥感研究[J]. 遥感技术与应用, 2017, 32(3): 556-563.
[10] 周胜男,车涛,戴礼云. 基于地面站点类型代表性的积雪遥感产品精度评价[J]. 遥感技术与应用, 2017, 32(2): 228-237.
[11] 杨志刚,达娃,除多. 近15 a青藏高原积雪覆盖时空变化分析[J]. 遥感技术与应用, 2017, 32(1): 27-36.
[12] 于小淇,邱玉宝,阮永俭,石利娟,拉巴卓玛. 高亚洲地区无云积雪遥感二值产品对比和精度验证分析[J]. 遥感技术与应用, 2017, 32(1): 37-48.
[13] 王杰,李卫朋. 基于渐进辐射传输模型的雪粒径与积雪覆盖面积反演算法[J]. 遥感技术与应用, 2017, 32(1): 64-70.
[14] 邵东航,李弘毅,王建,郝晓华,王润科,马媛. 基于多源遥感数据的积雪反照率反演研究[J]. 遥感技术与应用, 2017, 32(1): 71-77.
[15] 陈彬,王文. 雅砻江地区无云积雪覆盖产品的制作[J]. 遥感技术与应用, 2017, 32(1): 104-112.