Please wait a minute...


遥感技术与应用  2019, Vol. 34 Issue (1): 12-20    DOI: 10.11873/j.issn.1004-0323.2019.1.0012
 (1.南京信息工程大学遥感与测绘工程学院,江苏 南京 210044;
2.南京信息工程大学地理与科学学院,江苏 南京 210044)
Progress in Haze Monitoring by Remote Sensing Technology
 Xiang Jiamin1,Zhu Shanyou1,Zhang Guixin2,Liu Yi1,Zhou Yang1
 (1.School of Remote Sensing & Geomatics Engineering,Nanjing Universityof Information Science & Technology,Nanjing 210044,China;
2.School of Geographical Sciences,Nanjing University of InformationScience & Technology,Nanjing 210044,China)
 全文: PDF(1115 KB)  


关键词: 灰霾气溶胶遥感监测
Abstract: The haze weather is one of the serious disasters affecting the human health and social economic development.Quantitatively monitoring the haze spatio-temporal distribution with a higher precision by remote sensing technology is the basis to predict the haze spreading and then warn its influence early,which has been a hot issue in the research field of atmospheric environment.The corresponding progress in haze monitoring by remote sensing technology at home and abroad were summarized in this paper.The main methods of haze monitoring can be classified intothree categories:the image transformation from multi-channels and construction of haze indices based on the spectral differences,monitoring directly by the aerosol optical depth and indirectly by estimating the content of atmospheric particulates,and monitoring vertical and horizontal distribution features from multi-sources remotely sensed data combined the passive optical sensors with the active laser radars.Then the existing problems and difficulties were also discussed.In the future,on the basis of developing three-dimensional haze monitoring technology by multi-sources remote sensing methods,research on haze simulation and prediction with high spatio-temporal resolution as well as its practical application need to be further strengthened.
Key words: Haze    Aerosol    Remote sensing    Monitoring
收稿日期: 2018-05-31 出版日期: 2019-04-02
ZTFLH:  X513  
基金资助: 国家自然科学基金项目(41571418、41401471),江苏省“青蓝工程”项目共同资助。
作者简介: 向嘉敏(1994-),女,湖南怀化人,硕士研究生,主要从事大气环境遥感研究。。
E-mail Alert


向嘉敏, 祝善友, 张桂欣, 刘祎, 周洋. 灰霾遥感监测研究进展[J]. 遥感技术与应用, 2019, 34(1): 12-20.

Xiang Jiamin, Zhu Shanyou, Zhang Guixin, Liu Yi, Zhou Yang. Progress in Haze Monitoring by Remote Sensing Technology. Remote Sensing Technology and Application, 2019, 34(1): 12-20.


[1] Wu Dui.A Discussion on Difference between Haze and Fog and Warning of Ash Haze Weather[J].Meteorological Monthly,2015,31(4):3-7.[吴兑.关于霾与雾的区别和灰霾天气预警的讨论[J].气象,2015,31(4):3-7.]
[2] He Yuexin,Zhang Xuelei,Chen Weiwei,et al.Spatial-temporal Characteristics of Regional Air Quality in Northeastern China based on Multi-satellites Aerosol Products[J].Acta Scientiae Circumstantiate,2018,38(2):607-617.[何月欣,张学磊,陈卫卫,等.基于多卫星遥感的东北地区霾污染时空特征研究[J].环境科学学报,2018,38(2):607-617.]
[3] Ge Wei,Chen Liangfu,Si Yidan,et al.Haze Spectral Analysis and Detection Algorithm Using Satellite Remote Sensing Data[J].Spectroscopy and Spectral Analysis,2016,36(12):3817-3824.[葛巍,陈良富,司一丹,等.霾光谱特性分析与卫星遥感识别算法[J].光谱学与光谱分析,2016,36(12):3817-3824.]
[4] Mao Jietai,Li Chengcai,Zhang Junhua,et al.The Comparison of Remote Sensing Aerosol Optical Depthfrom MODIS Data and Ground Sun-photometer Observations[J].Journal of Applied Meteorological Science,2002,13(l):127-135.[毛节泰,李成才,张军华,等.MODIS 卫星遥感北京地区气溶胶光学厚度及与地面光度计遥感的对比[J].应用气象学报,2002,13(l):127-135.]
[5] Siegenthaler R,Baumgartner M F.Analyses of Haze and Mist Situations over Swiss Lowlands during Summer Smog-periods with NOAA-AVHRR Data[C]∥IEEE Geoscience and Remote Sensing Symposium,Firenze,Italy,July 10-14,1995,3:1842-1844.
[6] Lan Cuo,Zhang Yongxin.Monitoring and Analysing Smog in the Groundlayer Atmosphere over Xining City during Winter with Remote Sensing Image[J].Meteorological Monthly,1998,24(26):27-29.[兰措,张永新.冬季西宁市区上空阴霾的监测与分析[J].气象,1998,24(26):27-29.]
[7] Liu Yonghong.Research on Haze Identification in Beijing based on NOAA/AVHRR Satellite Data[J].Meteorological Monthly,2014,40(5):619-627.[刘勇洪.基于NOAA/AVHRR卫星资料的北京地霾识别研究[J].气象,2014,40(5):619-627.]
[8] Gao Dawei,Ma Hao,Yu Zhenyan,et al.Monitoring Haze Events from the MODIS True-Color Composite Image Series:A Case Study of Severe Haze Pollution Event in Zhejiang Province[J].China Environmental Science,2015,35(10):2939-2949.[高大伟,马浩,郁珍艳,等.基于连续 MODIS 真彩图的霾监测预警新方法——以浙江省一次严重霾污染过程为例[J].中国环境科学,2015,35(10):2939-2949.]
[9] Feng Haixia,Sun Dazhi,Shen Li,et al.The Analysis of Smog Impacted on the Measured Spectral Curve of the Main Ground Object[J].Spectroscopy and Spectral Analysis,2017,37(5):1329-1333.[冯海霞,孙大志,沈丽,等.雾霾对典型地物光谱曲线测量的影响分析[J].光谱学与光谱分析,2017,37(5):1329-1333.]
[10] Lu Yongshuai,Li Yuanxiang,Liu Bo,et al.Hyperspectral Data Haze Monitoring based on Deep Residual Network[J].Acta Optica Sinica,2017,37(11):1-11.[陆永帅,李元祥,刘波,等.基于深度残差网络的高光谱遥感数据监测霾[J].光学学报,2017,37(11):1-11.]
[11] Zhang Y,Guindon B,Cihlar J.An Image Transform to Characterize and Compensate for Spatial Variations in Thin Cloud Contamination of Landsat Images[J].Remote Sensing of Environment,2002,82(2):173-187.
[12] Crist E P.A Spectral Haze Diagnostic Feature for Normalizing Landsat Thematic Mapper Data[C]∥International Symposium on Remote Sensing of Environment,18th,Paris,France,October 1-5,1984:735-744.
[13] Ji C Y.Haze Reduction from the Visible Bands of Landsat TM and ETM+ Images over A Shallow Water Reef Environment[J].Remote Sensing of Environment,2008,112(4):1773-1783.
[14] Wen X P,Yang X F.Haze Removal from the Visible Bands of CBERS Remote Sensing Data[C]∥International Conference on Industrial and Information Systems,Haikou,China,Apr.24-25,2009:118-121.
[15] Hu J,Wei C,Li X,et al.A Haze Removal Module for Mutlispectral Satellite Imagery[C]∥Joint Urban Remote Sensing Event,Shanghai,China,May 20-22,2009:1-4.
[16] Kauth R J,Thomas G S.The Tasseled Cap:A Graphic Description of the Spectral-Temporal Development of Agricultural Crops as Seen by Landsat[C]∥Proceeding of the Symposium on Machine Processing of Remotely Sensed Data,Purdue University,West Lafayette,Indiana,June 29-July 1,1976.
[17] Richter R.A Spatially Adaptive Fast Atmospheric Correction Algorithm[J].International Journal of Remote Sensing,1996,17:1201-1214.
[18] Zha Y,Gao J,Jiang J J,et al.Normalized Difference Haze Index:ANew Spectral Index for Monitoring Urban Air Pollution[J].International Journal of Remote Sensing,2012,33(1):309-321.
[19] Zhang Wen,Pan Jinghu.Remote Sensing Estimation and the Empirical Orthogonal Function Analysis on Spatial-temporal Variations of PM2.5 Concentration during the Period of Large-Scale Haze in Beijing-Tianjing-Hebei in 2013[J].Journal of Lanzhou University:Natural Science Edition,2016,52(3):350-356.[张文,潘竟虎.2013年大范围雾霾期间京津冀PM .5质量浓度遥感估算及时空变化的经验正交函数分析[J].兰州大学学报:自然科学版,2016,52(3):350-356.]
[20] Li Chengcai,Mao Jietai,Liu Qihan,et al.Research on Distribution and Seasonal Variation of Aerosol Optical Depth in Eastern China Using MODIS[J].Chinese Science Bulletin,2003,48(19):2094-2100.[李成才,毛节泰,刘启汉,等.利用 MODIS 研究中国东部地区气溶胶光学厚度的分布和季节变化特征[J].科学通报,2003,48(19):2094-2100.]
[21] Kittaka C,Winker D M,Vaughan M A,et al.Intercomparison of Column Aerosol Optical Depths from CALIPSO and MODIS-Aqua[J].Atmospheric Measurement Techniques,2011,4(2):183-186.
[22] Li Z,Gu X,Wang L,et al.Aerosol Physical and Chemical Properties Retrieved from Ground-based Remote Sensing Measurements during Heavy Haze Days in Beijing Winter[J].Atmospheric Chemistry and Physics,2013,13(20):10171-10183.
[23] Tao M,Chen L,Wang Z,et al.A Study of Urban Pollution and Haze Clouds over Northern China during the Dusty Season based on Satellite and Surface Observations[J].Atmospheric Environment,2014,82:183-192.
[1] 鲁军景, 孙雷刚, 黄文江.  作物病虫害遥感监测和预测预警研究进展[J]. 遥感技术与应用, 2019, 34(1): 21-32.
[2] 迟文峰, 匡文慧, 党晓宏, 潘涛, 刘正佳. 基于遥感的内蒙古地级市土地覆盖结构时空变化特征分析[J]. 遥感技术与应用, 2019, 34(1): 33-45.
[3] 刘亲亲, 崔耀平, 刘素洁, 李楠. 中国不同土地利用类型分光辐射地表反照率研究[J]. 遥感技术与应用, 2019, 34(1): 46-56.
[4] 董立新. 基于直方图与像元分解模型的森林覆盖度遥感估算[J]. 遥感技术与应用, 2019, 34(1): 136-145.
[5] 牟多铎, 刘磊. ELM与SVM在高光谱遥感图像监督分类中的比较研究[J]. 遥感技术与应用, 2019, 34(1): 115-124.
[6] 蒋乔灵, 徐涵秋. GF-1 PMS2与GF-2 PMS2传感器数据的交互对比[J]. 遥感技术与应用, 2018, 33(6): 1084-1094.
[7] 张锴, 薛亮. 基于多源遥感数据的陕西2000~2015年城市扩展研究[J]. 遥感技术与应用, 2018, 33(6): 1170-1177.
[8] 郭瑞芳, 刘元波. 遥感降水数据精度检验策略及检验方法综述[J]. 遥感技术与应用, 2018, 33(6): 983-993.
[9] 李淑敏, 冯权泷, 梁其椿, 张学庆. 基于深度学习的国产高分遥感影像飞机目标自动检测[J]. 遥感技术与应用, 2018, 33(6): 1095-1102.
[10] 王恺宁, 王修信, 黄凤荣, 罗涟玲. 喀斯特城市地表温度遥感反演算法比较[J]. 遥感技术与应用, 2018, 33(5): 803-810.
[11] 张晓峰, 吕晓琪, 张信雪, 张继凯, 王月明, 谷宇, 樊宇. 多时刻海色遥感数据融合及其可视化[J]. 遥感技术与应用, 2018, 33(5): 873-880.
[12] 冯姣姣, 王维真, 李净, 刘雯雯. 基于BP神经网络的华东地区太阳辐射模拟及时空变化分析[J]. 遥感技术与应用, 2018, 33(5): 881-889.
[13] 谢旭, 陈芸芝. 基于PSO-RBF神经网络模型反演闽江下游水体悬浮物浓度[J]. 遥感技术与应用, 2018, 33(5): 900-907.
[14] 冀新莹, 韦玉春, 王问尧, 方宏. 城镇区域高分辨率遥感影像地表覆盖变化检测的误差分析[J]. 遥感技术与应用, 2018, 33(5): 932-941.
[15] 迟文峰, 匡文慧, 贾静, 刘正佳. 京津风沙源治理工程区LUCC及土壤风蚀强度动态遥感监测研究[J]. 遥感技术与应用, 2018, 33(5): 965-974.