Please wait a minute...
img

官方微信

遥感技术与应用  2019, Vol. 34 Issue (1): 21-32    DOI: 10.11873/j.issn.1004-0323.2019.1.0021
综述     
 作物病虫害遥感监测和预测预警研究进展
鲁军景1,2,孙雷刚1,2,黄文江3
 (1.河北省科学院地理科学研究所,河北 石家庄050021;
2.河北省地理信息开发应用工程技术研究中心,河北 石家庄050021;
3.中国科学院遥感与数字地球研究所 数字地球重点实验室,北京100094)
Research Progress in Monitoring and Forecasting of Crop Diseases and Pests by Remote Sensing
Lu Junjing1,2,Sun Leigang1,2,Huang Wenjiang3
(1.Institute of Geographical Sciences,Hebei Academy of Sciences,Shijiazhuang 050021,China;
2.Hebei Engineering Research Center for Geographic Information Application,
Shijiazhuang 050021,China;3.Key Laboratory of Digital Earth Science,Institute of Remote
Sensing and Digital Earth,Chinese Academy of Sciences,Beijing 100094,China)
 全文: PDF(1834 KB)  
摘要:

危害严重的病虫害胁迫常在我国作物主产区发生,植保部门的田间调查、实地取样等测报方式已经无法满足目前精准、无损、高效的监测预警需求。能够实时动态监测的遥感技术手段为快速获取地表连续信息提供了可能,也是未来作物病虫害遥感监测预测的主要发展方向。通过总结、归纳和整理目前作物病虫害遥感应用中不同病虫害胁迫类型区分、单一胁迫程度估算和作物胁迫预测预警的三大主要方向的研究现状,阐述了现有研究中使用的特征提取方法、特征选择方法,以及胁迫类型区分、程度估算和预测预警的模型算法,并通过国内检索平台对三大粮食作物病虫害的遥感研究应用情况进行了统计分析。在此基础上探讨作物病虫害遥感监测和预测预警现存的问题和未来的发展趋势,推动农业可持续性的长效体制的构建。

关键词: 作物病虫害遥感监测预测预警方法与模型    
Abstract: Crop diseases and pests are the first natural biological hazards that threaten food production and quality.The investigation and sampling in field of plant protection department can’t meet demand of the accurate,non-destructive and efficient monitoring and warning.Currently,remote sensing which can monitor dynamically in real time provides the possibility for the rapid acquisition of continuous surface information,and is also the main development direction monitoring and prediction of crop diseases and pests in the future.Research status of three main directions,including classification of different stresses,severity estimation and stress forecasting,are summarized,and the methods of feature extraction,feature selection,and algorithms are expounded.Then,the application of diseases and pests of three major foodsby remote sensing was analyzed by means of domestic retrieval platforms.On this basis,the existing problems and future development trend of monitoring and forecasting of crop diseases and pests by remote sensing are discussed to promotethe long-term mechanism of agricultural sustainable development.
Key words:      Crop pests and diseases    Remote sensing monitoring    Forecasting and early warning    Methods and models
收稿日期: 2018-03-22 出版日期: 2019-04-02
ZTFLH:  S127  
基金资助:  河北省科学院科技计划项目(17104),河北省自然科学青年基金项目(D2016302002)。
作者简介: 鲁军景(1989-),女,河北邯郸人,硕士,实习研究员,主要从事植被定量遥感方面的研究。Email:junjing2@sina.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

鲁军景, 孙雷刚, 黄文江.  作物病虫害遥感监测和预测预警研究进展[J]. 遥感技术与应用, 2019, 34(1): 21-32.

Lu Junjing, Sun Leigang, Huang Wenjiang. Research Progress in Monitoring and Forecasting of Crop Diseases and Pests by Remote Sensing. Remote Sensing Technology and Application, 2019, 34(1): 21-32.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2019.1.0021        http://www.rsta.ac.cn/CN/Y2019/V34/I1/21

[1]Huo Zhiguo,Liu Wancai,Shao Zhenrun,et al.On Developing Long Term Meteorological Prediction Research of Crop Pests and Diseases Prevailing in China[J].Journal of Natural Disasters,2000,9(1):117-121.[霍治国,刘万才,邵振润,等.试论开展中国农作物病虫害危害流行的长期气象预测研究[J].自然灾害学报,2000,9(1):117-121.] [2]Huang Wenjiang,Zhang Jincheng,Luo Juhua,et al.Remote Sensing Monitoring and Forecasting of Crop Pests and Diseases[M].Beijing:Science Press,2015.[黄文江,张竞成,罗菊花,等.作物病虫遥感监测与预测[M].北京:科学出版社,2015.] [3]Lu Junjing,Huang Wenjiang,Zhang Jingcheng,et al.Quantitative Identification of Yellow Rust and Powdery Mildew in Winter Wheat based on Wavelet Feature[J].Spectroscopy and Spectral Analysis,2016,36(6):1854-1858.[鲁军景,黄文江,张竞成,等.基于小波特征的小麦白粉病与条锈病的定量识别研究[J].光谱学与光谱分析,2016,36(6):1854-1858.] [4]Sankaran S,Mishra A,Ehsani R,et al.A Review of Advanced Techniques for Detecting Plant Diseases[J].Computers and Electronics in Agriculture,2010,72(1):1-13. [5]Yuan Lin,Zhang Jingcheng,Zhao Jinlin,et al.Differentiation of Yellow Rust and Powdery Mildew in Winter Wheat and Retrieving of Disease Severity based on Leaf Level Spectral Analysis[J].Spectroscopy and Spectral Analysis,2013,33(6):1608-1614.[袁琳,张竞成,赵晋陵,等.基于叶片光谱分析的小麦白粉病与条锈病区分及病情反演研究[J].光谱学与光谱分析,2013,33(6):1608-1614.] [6]Guan Q S,Huang W J,Zhao J L,et al.Quantitative Identification of Yellow Rust,Powdery Mildew and Fertilizer-water Stress in Winter Wheat Using In-situ Hyperspectral Data[J].Sensor Letters,2014,12:1-7. [7]Zhao J L,Zhang D Y,Luo J H,et al.A Comparative Study on Monitoring Leaf-scale Wheat Aphids Using Pushbroom Imaging and Non-imaging ASD Field Spectrometers[J].International Journal of Agriculture and Biology,2012,14(1):136-140. [8]Qiao Hongbo,Shi Yue,Si Haiping,et al.Monitoring and Classification of Wheat Take-all in Field based on Imaging Spectrometer[J].Transactions of the Chinese Society of Agricultural Engineering.2014,3(20):172-178.[乔洪波,师越,司海平,等.基于近地成像光谱的小麦全蚀病等级监测[J].农业工程学报,2014,3(20):172-178.] [9]Jonas F,Menz G.Multi-temporal Wheat Disease Detection by Multi-spectral Remote Sensing[J].Precision Agriculture,2007,8(3):161-172. [10]Yuan Lin.Identification and Differentiation of Wheat Diseasesand Insects with Multi-source and Multi-scale Remote Sensing Data[D].Hangzhou:Zhejiang University,2015.[袁琳.小麦病虫害多尺度遥感识别和区分方法研究[D].杭州:浙江大学,2015.] [11]Huang Muyi,Huang Wenjiang,Liu Liangyun,et al.Spectral Reflectance Feature of Winter Wheat Single Leaf Infected with Stripe Rust and Severity Level Inversion[J].Transactions of the Chinese Society of Agricultural Engineering,2004,20(1):176-180.[黄木易,黄文江,刘良云,等.冬小麦条锈病单叶光谱特性及严重度反演[J].农业工程学报,2004,20(1):176-180.] [12]Graeff S,Link J,Claupein W.Identification of Powdery Mildew and Take-all Disease in Wheat by Means of Leaf Reflectance Measurements[J].Central European Journal of Biology,2006,1(2):275-288. [13]Zang Hongting.Monitoring and Evaluation the Spatial and Temporal Dynamic Changesof Corn Armyworm based on Remote Sensing Data[D].Harbin:Northeast Agricultural University,2014.[臧红婷.玉米粘虫时空动态遥感监测与评价[D].哈尔滨:东北农业大学,2014.] [14]Liu Zhanyu.Monitoring the Rice Disease and Insect Stress with Remote Sensing[D].Hangzhou:Zhejiang University,2008.[刘占宇.水稻主要病虫害胁迫遥感监测研究[D].杭州:浙江大学,2008.] [15]Yang C M,Cheng C H.SpectralCharacteristics of Rice Plants Infested by Brown Plant Hoppers[J].Proceedings of the National Science Council Republic of China Part B Life Sciences,2001,25(3):180-186. [16]Yang C M,Cheng C H,Chen R K.Changes inSpectral Characteristics of Rice Canopy Infested with Brown Plant Hopper and Leaf Folder[J].Crop Science,2007,47(1):329-335. [17]Jones C D,Jones J B,Lee W S.Diagnosis of Bacterial Spot Tomato Using Spectral Signatures[J].Computers and Electronics in Agriculture,2010,74(2):329-335. [18]Jiang Jinbao,Chen Yunhao,Huang Wenjiang.Using Hyperspectral Derivative Index to Monitor Winter Wheat Disease[J].Spectroscopy and Spectral Analysis,2007,27(12):2475-2479.[蒋金豹,陈云浩,黄文江.用高光谱微分指数监测冬小麦病害的研究[J].光谱学与光谱分析,2007,27(12):2475-2479.] [19]Huang W J,Huang M Y,Liu L Y,et al.Inversion of the severity of Winter Wheat Yellow Rust Using Proper Hyper Spectral Index[J].Transactions of the Chinese Society of Agricultural Engineering.2005,21(4):97-103. [20]Huang W J,Lamb D W,Niu Z,et al.Identification of Yellow Rust in Wheat Using In-situ Spectral Reflectance Measurements and Airborne Hyperspectral Imaging[J].Precision Agriculture,2007,8(5):187-197. [21]Lu Junjing,Huang Wenjiang,Jiang Jinbao,et al.Comparison of Wavelet Features and Conventional Spectral Features on Estimating Severity of Stripe Rust in Winter Wheat[J].Journal of Triticeae Crops,2015,35(10):1456-1461.[鲁军景,黄文江,蒋金豹,等.小波特征与传统光谱特征估测冬小麦条锈病病情严重度的对比研究[J].麦类作物学报,2015,35(10):1456-1461.] [22]Sun Jiayi.Sensitivity of Hyperspectral Reflectance to Monitor Rice Pests and the Monitor Methods for Rice Plant Hoppers[D].Nanjing:Nanjing Agricultural University,2013.[孙嘉怿.水稻叶片高光谱虫害的敏感性及稻飞虱的为害监测[D].南京:南京农业大学,2013. [23][JP2]Zhang Jingcheng.Methods for Information Extraction of Wheat [JP]Disease based on Multi-source Remote Sensing Data[D].Hangzhou:Zhejiang University,2012.[张竞成.多源遥感数据小麦病害信息提取方法研究[D].杭州:浙江大学,2012.] [24]Qiao Hongbo,Ma Xinming,Cheng Dengfa,et al.Detecting Infestation of Take-all Disease in Winter Wheat Using TM Image[J].Journal of Triticeae Crops,2009,29(4):716-720.[乔红波,马新明,程登发,等.基于TM影像的小麦全蚀病危害信息提取[J].麦类作物学报,2009,29(4):716-720.] [25]Luo Juhua.Monitoring and Predicting of Aphid based on Multi-source Remote Sensing Data[D].Beijing:Beijing Normal University,2012.[罗菊花.基于多源数据的小麦蚜虫遥感监测预测研究[D].北京:北京师范大学,2012.] [26]Lu Junjing.Remote Sensing Monitoring of Powdery Mildew and Yellow Rust in Winter Wheat based on Multi-source Data[D].Beijing:China University of Mining & Technology,2016.[鲁军景.多源数据冬小麦白粉病和条锈病遥感监测研究[D].北京:中国矿业大学,2016.] [27]Ma Huiqin,Huang Wenjiang,Jing Yuanshu,et al.Remote Sensing Monitoring of Wheat Powdery Mildew based on AdaBoost Model Combining mRMR Algorithm[J].Transactions of the Chinese Society of Agricultural Engineering,2017,33(5):162-169.[马慧琴,黄文江,景元书,等.基于AdaBoost模型和mRMR算法的小麦白粉病遥感监测[J].农业工程学报,2017,33(5):162-169.] [28]Nie Chenwei,Yuan Lin,Wang Baotong,et al.Monitoring Wheat Powdery Mildew based on Integrated Remote Sensing and Meteorological Information[J].Acta Phytopathologica Sinica,2016,46(2):285-288.[聂臣巍,袁琳,王保通,等.综合遥感与气象信息的小麦白粉病监测方法[J].植物病理学报,2016,46(2):285-288.] [29]Ma Ning,Meng Zhijun,Wang Pei,et al.Research Summary on Forecasting Methods of Crop Pests and Diseases[J].Journal of Heilongjiang Bayi Agricultural University,2016,28(1):15-18.[马宁,孟志军,王培,等.农作物病虫害预报方法研究综述[J].黑龙江八一农垦大学学报,2016,28(1):15-18.] [30]Scherm H,Yang X B.Atmospheric Teleconnection Patterns Associated with Wheat Stripe Rust Disease in North China[J].International Journal of Biometeorology,Berlin,Germany,1998.42(1):28-33. [31]Maelzer D A,Zalucki M P.Long Range Forecasts of the Numbers of Helicoverpa Punctigera and H.armigera(Lepidoptera:Noctuidae) in Australia Using the Southern Oscillation Index and the Sea Surface Temperature[J].Bulletin of Entomological Research.2000,90(2):133-146. [32]Huo Zhiguo,Ye Cailing,Qian Shuan,et al.Relationship between Climatic Anomaly and Prevailling of the Wheat Powdery Mildew in China[J].Journal of Natural Disasters,2002,11(1):85-90.[霍治国,叶彩玲,钱栓,等.气候异常与中国小麦白粉病灾害流行关系的研究[J].自然灾害学报,2002,11(1):85-90.] [33]Yang Hongsheng,Ji Rong,Wang Ting.Atmospheric Circulation Background and Long-term Prediction of Grasshopper Occurrence in Xinjiang[J].Chinese Journal of Ecology,2008,27(2):218-222.[杨洪升,季荣,王婷.新疆蝗虫发生的大气环流背景及长期预测[J].生态学杂志,2008,27(2):218-222.] [34]Strand J F.Some Agrometeorological Aspects of Pest and Disease Management for the 21st Century[J].Agricultural and Forest Meteorology,2000,103(1-2):73-82. [35]Baker K M,Kirk W W.Comparative Analysis of Models Integrating Synoptic Forecast Data into Potato Late Blight Risk Estimate Systems[J].Computers and Electronics in Agriculture,2007,57(1):23-32. [36]Tan W Z,Li C W,Bi C W,et al.A Computer Software-Epitimulator for Simulating Temporal Dynamics of Plant Disease Epidemic Progress[J].Agricultural Sciences in China,2010,9(2):242-248. [37]Zhang Lei.Variation and Regional Dynamic Warning of Crop Disease and Pests under Climate Change[D].Beijing:Chinese Academy of Meteorological Sciences,2013.[张蕾.气候变化背景下农作物病虫害的变化及区域动态预警研究[D].北京:中国气象科学研究院,2013.] [38]Tang Cuicui,Huang Wenjiang,Luo Juhua,et al.Forecasting Wheat Aphid with Remote Sensing based on Relevance Vector Machine[J].Transactions of the Chinese Society of Agricultural Engineering,2015,31(6):201-207.[唐翠翠,黄文江,罗菊花,等.基于相关向量机的冬小麦蚜虫遥感预测[J].农业工程学报,2015,31(6):201-207.] [39]Dutta S,Singh S K,Khullar M.A Case Study on Forewarning of Yellow Rust Affected Areas on Wheat Crop Using Satellite Data[J].Journal of the Indian Society of Remote Sensing,2014,42(2):335-342. [40]Ma Huiqin,Huang Wenjiang,Jing Yuanshu.Wheat Powdery Mildew Forecasting in Filling Stage based on Remote Sensing and Meteorological Data[J].Transactions of the Chinese Society of Agricultural Engineering,2016,32(9):165-172.[马慧琴,黄文江,景元书.遥感与气象数据结合预测小麦灌浆期白粉病[J].农业工程学报,2016,32(9):165-172.] [41]Delwiche S R,Kim M S.Hyperspectral Imaging for Detection of Scab in Wheat[C]∥Environmental and Industrial Sensing:Biological Quality and Precision Agriculture Ⅱ,Proceedings of SPIE,2000,4203:13-20. [42]Moshou D,Bravo C,West J,et al.Automatic Detection of Yellow Rust in Wheat Using Reflectance Measurements and Neural Networks[J].Computers and Electronics in Agriculture,2004,44:173-188. [43]Liu Liangyun,Huang Muyi,Huang Wenjiang,et al.Monitoring Stripe Rust Disease of Winter Wheat Using Multi-temporal Hyperspectral Airborne Data[J].Journal of Remote Sensing,2004,8(3):275-281.[刘良云,黄木易,黄文江,等.利用多时相的高光谱航空图像监测冬小麦条锈病.遥感学报,2004,8(3):275-281.] [44]Liu Z Y,Wu H F,Huang J F.Application of Neural Networks to Discriminate Fungal Infection Levels in Rice Panicles Using Hyperspectral Reflectance and Principal Components Analysis[J].Computers and Electronics in Agriculture,2010,70(2):99-106. [45]Demetriades-Shah T H,Steven M D,Clark J A.High Resolution Derivative Spectra in Remote Sensing[J].Remote Sensing of Environment,1990,33(1):55-64. [46][JP2]Gamon J A,Penuelas J,Field C B.A Narrow-waveband Spectral Index That Tracks Diurnal Changes in Photosynthetic Efciency[J].Remote Sensing of Environment,1992,41:35-44.[JP] [47]Naidu R A,Perry E M,Pierce F J,et al.The Potential of Spectral Reflectance Technique for the Detection of Grapevine Leaf Roll-associated Virus-3 in Two Red-berried Wine Grape Cultivars[J].Computers and Electronics in Agriculture,2009,66(1):38-45. [48]Huang W J,Guan Q S,Luo J H,et al.New Optimized Spectral Indices for Identifying and Monitoring Winter Wheat Diseases[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2014,7(6):2516-2524. [49]Cheng T,Rivard B,Sanchenz-azofeifa G A.Spectroscopic Determination of Leaf Water Content Using Continuous Wavelet Analysis[J].Remote Sensing of Environment,2011,115(2):662. [50]Cheng T,Rivard B,Sánchez-Azofeifa A,et al.Continuous Wavelet Analysis for the Detection of Green Attack Damage due to Mountain Pine Beetle Infestation[J].Remote Sensing of Environment,2010,114(4):899-910. [51]Zhang J C,Yuan L,Pu R L,et al.Comparison between Wavelet Spectral Features and Conventional Spectral Features in Detecting Yellow Rust for Winter Wheat[J].Computers and Electronics in Agriculture,2014,100:79-87. [52]Shi Y,Huang W J,Zhou XF,et al.Evaluation of Wavelet Spectral Features in Pathological Detection and Discrimination of Yellow Rust and Powdery Mildew in Winter Wheat with Hyperspectral Reflectance Data[J].Journal of AppliedRemote Sensing,2017,11(2):026025. [53]Shi Y,Huang W J,González-Moreno P,et al.Wavelet-based Rust Spectral Feature Set(WRSFs):A Novel Spectral Feature Set based on Continuous Wavelet Transformation for Tracking Progressive Host-Pathogen Interaction of Yellow Rust on Wheat[J].Remote Sensing,2018,10(4):525. [54]Huang W J,Lu J J,Ye H C,et al.Quantitative Identification of Crop Disease and Nitrogen-water Stress in Winter Wheat Using Continuous Wavelet Analysis[J].International Journal of Agricultural and Biological Engineering,2018,11(2):145-152. [55]Xie Fei.Research and Implementation of Image Texture Feature Extraction and Image Classification System[D].Beijing:University of Electronic Science and Technology of China,2009.[谢菲.图像纹理特征的提取和图像分类系统研究及实现[D].北京:电子科技大学,2009.] [56]Zhu Yun.The Detection of Fruit Tree Pests based on Digital Image Processing[D].Zhengzhou:North China University of Water Resources and Electric Power,2012.[朱云.基于数字图像处理的果树病虫害智能化检测[D].郑州:华北水利水电学院,2012.] [57]Bu Yadong.Research of Image Texture Feature Extraction[D].Ji’nan:Shandong Normal University,2012.[步亚东.图像纹理特征提取的研究[D].济南:山东师范大学,2012.] [58]Guo Qing,Wang Liwen,Dong Fangmin,et al.Identification of Wheat Stripe Rust and Powdery Mildew Using Orientation Coherence Feature[J].Transactions of the Chinese Society of Agricultural Machinery,2015,46(1):26-34.[郭青,王骊雯,董方敏,等.基于方向一致性特征的小麦条锈病与白粉病识别[J].农业机械学报,2015,46(1):26-34.] [59]Chestmore D,Bernard T,Inman A J,et al.Image Analysis for the Identification of the Quarantine Pest Tilletia Indica[J].EPPO Bulletin,2003,3(3):495-499. [60]Ahmad I S,Reid J F.Evaluation of Colour Representations for Maize Images[J].Journal of Agricultural Engineering Research,1996,63:185-196. [61]Martin D P,Rybicki E P.Microcomputer-based Quantification of Maize Streak Virus Symptom in Zeamays[J].Phtopathology,1998,88(5):422-427. [62]Shatadal P,Tan J.Identifying Damaged Soybeans by Color Image Analysis[J].Applied Engineering in Agriculture,2003,9(1):65-69. [63]Hu Chunhua,Li Pingping.Application of Image Processing to Diagnose Cucumbers Short of Mg and N[J].Journal of Jiangsu University:Natural Science Edition,2004,25(1):9-12.[胡春华,李萍萍.基于图像处理的黄瓜缺氮与缺镁判别的研究[J].江苏大学学报:自然科学版,2004,25(1):9-12.] [64]Ma Xiaodan,Qi Guangyun.Investigation and Recognition on Diseased Spots of Soybean Laminae based on Neural Network[J].Journal of Heilongjiang August First Land Reclamation University,2006,18(2):84-87.[马晓丹,祁广云.基于神经网络的大豆叶片病斑的识别与研究[J].黑龙江八一农垦大学学报,2006,18(2):84-87.] [65]Lai Junchen.Research on Maize Diseases Intelligent Diagnosis based on Disease Images[D].Shihezi:Shihezi University,2010.[赖军臣.基于病症图像的玉米病害智能诊断研究[D].石河子:石河子大学,2010.] [66]Wang Keru.Diagnosis of Crop Disease,Insect Pest and Weed based on Image Recognition[D].Beijng:Chinese Academy of Agricultural Science,2005.[王克如.基于图像识别的作物病虫草害诊断研究[D].北京:中国农业科学院,2005.] [67]Zhang Jing,Wang Shuangxi,Dong Xiaozhi,et al.A Study on Method of Extract of Texture Characteristic Value in Image Processing for Plant Disease of Greenhouse[J].Journal of Shenyang Agricultural University,2006,37(3):282-285.[张静,王双喜,董晓志,等.基于温室植物叶片纹理的病害图像处理及特征提值取方法的研究[J].沈阳农业大学学报.2006,37(3):282-285.] [68]Qi Xinglan,Study on Information Extraction Technology of Dendrolimus Punctatus Damage based on SPOT-5 Remote Sensing Images[D].Fuzhou:Fujian Agriculture and Forestry University,2011.[亓兴兰.SPOT-5遥感影像马尾松毛虫害信息提取技术研究[D].福州:福建农林大学,2011.] [69]Xu Guili,Mao Hanping,Li Pingping.Research on Extraction Leaf Texture Features as Sample of Nutrient Shortage by Percent Histogram of Differentiation[J].Transactions of the Chinese Society of Agricultural Machinery,2003,34(2):76-79.[徐贵力,毛罕平,李萍萍.差分百分率直方图法提取缺素叶片纹理特征[J].农业机械学报,2003,34(2):76-79.] [70]Patil J K,Kumar R.Feature Extraction of Diseased Leaf Images[J].Journal of Signal and Image Processing,2012,3(1):60-63. [71]Bryceson K P.Digitally Processed Satellite Data as A Tool in Detecting Potential Australian Plague Locust Outbreak Areas[J].Journal of Environmental Management,1990,30:191-207. [72]Bryceson K P.TheUse of Landsat MSS Data to Determine the Distribution of Locust Eggbeds in the Riverina Region of New South Wales[J].Australia International Journal of Remote Sensing,1989,10:1749-1762. [73]Bryceson K P,Wright D E.AnAnalysis of the 1984 Locust Plague in Australia Using Multitemporal Landsat Multispectral Data and ASimulation Model of Locust Development[J].Agriculture,Ecosystems and Environment,1986,16:87-102. [74]Michael C,Pierre M,Etienne B,et al.Spot Vegetation Contribution to Desert Locust Habitat Monitoring[C]∥Vegetation 2000 Conference,2017,CD-ROM :247-258. [75]Wolter P T,Townsend P A,Sturtevant B R,et al.Remote Sensing of the Distribution and Abundance of Host Species for Spruce Budworm in Northern Minnesota and Ontario[J].Remote Sensing of Environment,2008,112:3971-3982. [76]Baret F,Vanderbilt V C,Steven M D,et al.Use of Spectral Analogy to Evaluate Canopy Reflectance Sensitivity to Leaf Optical Properties[J].Remote Sensing of Environment,1994,48(2):253-260. [77]Rouse J W,Haas R H,Schell J A,et al.Monitoring Vegetation Systems in the Great Plains with ERTS[J].Third ERTS Symposium,NASA SP-351,NASA,1973,1:309-317. [78]Chen J M.Evaluation ofVegetation Indices and A Modified Simple Ratio for Boreal Applications[J].Canadian Journal of Remote Sensing,1996,22:229-242. [79]Gitelson A A,Merzlyak M N,Chivkunova O B.Optical Properties and Nondestructive Estimation of Anthocyanin Content in Plant Leaves[J].Photochemistry and Photobiology,2001,74:38-45. [80]Roujean J L,Breon F M.Estimating PAR Absorbed by Vegetation from Bidirectional Reflectance Measurements[J].Remote Sensing of Environment,1995,51:375-384. [81]Devadas R,Lamb D W,Simpfendorfer S,et al.Evaluating Ten Spectral Vegetation Indices for Identifying Rust Infection in Individual Wheat Leaves[J].Precision Agriculture,2009,10:459-470. [82]Rondeaux G,Steven M,Baret F.Optimization of Soil-adjusted Vegetation Indices[J].Remote Sensing Environment,1996,55(2):95-107. [83]Kim M S,Daughtry C S T,Chappelle E W,et al.The Use of High Spectral Resolution Bands for Estimating Absorbed Photosynthetically Active Radiation(APAR)[C]∥Proceedings of the 6th International Symposium on Physical Measurements and Signatures in Remote Sensing,France:Val d’Isere,1994:299-306. [84]Haboudane D,Miller J R,Tremblay N,et al.Integrated Narrowband Vegetation Indices for Prediction of Crop Chlorophyll content for Application to Precision Agriculture[J].Remote Sensing of Environment,2002,81:416-426. [85]Merton R,Huntington J.Early Simulation of the ARIES-1 Satellite Sensor for Multi-temporal Vegetation Research derived from AVIRIS[R].Summaries of the Eight JPL Airborne Earth Science Workshop.Pasadena,CA:JPL Publication,1999:299-307. [86]Gong P,Pu R L,Heald R C.Analysis of in Situ Hyperspectral Data for Nutrient Estimation of Giant Sequoia[J].International Journal of Remote Sensing,2002,23(9):1827-1850. [87]Pu R L,Ge S,Kelly N M,et al. Spectral Absorption Features as Indicators of Water Status in Coast Live Oak(Quercus Agrifolia) Leaves[J].International Journal of Remote Sensing,2003,24(9):1799-1810. [88]Muhammed H H,Larsolle A.FeatureVector based Analysis of Hyperspectral Crop Reflectance Data for Discrimination and Quantification of Fungal Disease Severity in Wheat[J].Biosystems Engineering,2003,86(2):125-134. [89]Li Bo,Liu Zhanyu,Huang Jingfeng.Hyperspectral Identification of Rice Diseases and Pests based on Principal Pomponent Analysis and Probabilistic Neural Network[J].Transactions of the Chinese Society of Agricultural Engineering,2009,25(9):143-147.[李波,刘占宇,黄敬峰,等.基于PCA 和PNN 的水稻病虫害高光谱识别[J].农业工程学报,2009,25(9):143-147.] [90]Costa G,Noferini M,Fiori G,et al.Innovative Application of Non-destructive Techniques for Fruit Quality and Disease Diagnosis[J].Acta Horticulturae,2007,753(1):275-282. [91]Shen Wenying,Li Yingxue,Feng Wei,et al.Inversion Model for Severity of Powdery Mildew in Wheat Leaves based on Factor Analysis-BP Neural Network[J].Transactions of the Chinese Society of Agricultural Engineering,2015,22(31):183-190.[沈文颖,李映雪,冯伟,等.基于因子分析-BP神经网络的小麦叶片白粉病反演模型[J].农业工程学报,2015,22(31):183-190.] [92]Lin Na,Yang Wunian.Hyperspectral Remote Sensing Image Feature Extraction based on Kernel Mininum Noise Fraction Transformation[J].Remote Sensing Technology and Application,2013,28(2):245-251.[林娜,杨武年.基于核最小噪声分离变换的高光谱遥感影像特征提取研究[J].遥感技术与应用,2013,28(2):245-251.] [93]Bai Lin,Hui Meng.Classification and Feature Extraction of Hyperspectral Images based on Improved Minimum Noise Fraction Transformation[J].Computer Engineering & Science,2015,37(7):1344-1348.[白璘,惠萌.基于改进最小噪声分离变换的特征提取与分类[J].计算机工程与科学,2015,37(7):1344-1348.] [94]Zhu Yubo.Hyperspectral Monitoring the Damage of Rice by Leaf Folder Cnaphalocrocis Medinalis GENE[D].Nanjing:Nanjing Agricultural University,2012.[朱宇波.稻纵卷叶螟危害水稻的高光谱监测方法研究[D].南京:南京农业大学,2012.] [95]Ji Huihua.Early Detection of Rice Disease and Pests Using Spectrum Analysis Technology[D].Hangzhou:China Jiliang University,2013.[季慧华.基于光谱分析技术的水稻病虫害早期检测研究[D].杭州:中国计量学院,2013.] [96]Mi Yating,Research on Greenhouse Tomato Disease Diagnosis based on GA-BP Network[D].Harbin:Norseast Forest University,2016.[米雅婷.基于GA-BP神经网络的温室番茄病害诊断研究[D].哈尔滨:东北林业大学,2016.] [97]Gao Guolong,Du Huaqiang,Han Ning,et al.Mapping of Moso Bamboo Forest Using Object-based Approach based on the Optimal Features[J].Scientia Silvae Sinicae,2016,9(52):77-85.[高国龙,杜华强,韩凝,等.基于特征优选的面向对象毛竹林分布信息提取[J].林业科学,2016,9(52):77-85.] [98][JP2]Xiao Yan,Jiang Qigang,Wang Bin,et al.Objectbased Land-use Classification based on Hybrid Feature Selection Method of Combing ReliefF and PSO[J].Transactions of the Chinese Society of Agricultural Engineering,2016,32(4):211-216.[肖艳,姜琦刚,王斌,等.基于ReliefF和PSO混合特征选择的面向对象土地利用分类[J].农业工程学报,2016,32(4):211-216.][JP] [99]Wang Lu,Gong Guanghong.Multiple Features Remote Sensing Image Classification based on Combining RelieF and mRMR[J].Chinese Journal of Stereology and Image Analysis,2014,19(3):250-257.[王露,龚光红.基于ReliefF+mRMR特征降维算法的多特征遥感图像分类[J].中国体视学与图像分析,2014,19(3):250-257.][ZK)] [100]Cheng Ximeng,Sheng Zhanfeng,Xing Tingyan,et al.Efficiency and Accuracy of Multispectral Image Classification based on mRMR Feature Selection Method[J].Journal of Geo-information Science,2016,6(18):815-823.[程希萌,沈占锋,邢廷炎,等.基于mRMR特征优选算法的多光谱遥感影像分类效率精度分析[J].地理信息科学学报,2016,6(18):815-823.][ZK)] [101]Zhang Yadong.Research on Buildings Extraction of Remote Sensing Image based on Morphology[D].Changchun:Jilin University,2017.[张亚东.基于形态学的遥感影像房屋提取研究[D].长春:吉林大学,2017.] [102]Jiang Y,Li C Y.mRMR-based Feature Selection for Classification of Cotton Foreign Matter Using Hyperspectral Imaging[J].Computers and Electronics in Agriculture.2015,119:191-200. [103]Muhammed H H.Hyperspectral Crop Reflectance Data for Characterizing and Estimating Fungal Disease Severity in Wheat[J].Biosystems Engineering,2005,91(1):9-20. [104]Wang Jing,Jing Yuanshu,Huang Wenjiang,et al.Comparative Research on Estimating the Severity of Yellow Rust in Winter Wheat[J].Spectroscopy and Spectral Analysis,2015,35(6):1649-1653.[王静,景元书,黄文江,等.冬小麦条锈病严重度不同估算方法对比研究[J].光谱学与光谱分析.2015,35(6):1649-1653.] [105]Shi Y,Huang W J,Ye H C,et al.Partial Least Square Discriminant Analysis based on Normalized Two-stage Vegetation Indices for Mapping Damage from Rice Diseases Using Planet Scope Datasets[J].Sensors,2018,18(6):1901. [106]Zheng Q,Huang W J,Cui X M,et al.New Spectral Index for Detecting Wheat Yellow Rust Using Sentinel-2 Multispectral Imagery[J].Sensors,2018,18(3):868. [107]Shi Jingjing,Liu Zhanyu,Zhang Lili.Hyperspectral Recognition of Rice Damage by Rice Leaf Roller based on Supper Vector Machine[J].Chinese Journal of Rice Science,2009,23(3):331-334.[石晶晶,刘占宇,张莉丽.基于支持向量机(SVM)的稻纵卷叶螟危害水稻高光谱遥感识别[J].中国水稻科学,2009,23(3):331-334.] [108]Sun Jun,Tan Wenjun,Mao Hanping,et al.Recognition of Multiple Plant Leaf Diseases based onImproved Convolutional Neural Network[J].Transactions of the Chinese Society of Agricultural Engineering,2017,33(19):209-215.[孙俊,谭文军,毛罕平,等.基于改进卷积盛景网络的多种植物叶片病害识别[J].农业工程学报,2017,33(19):209-215.] [109]Zhang Chu.Detection Mechanism and Methodology of Brassicanapus Disease Using Spectroscopy and Spectral Imaging Technologies[D].Hangzhou:Zhejiang University,2016.[张初.基于光谱与光谱成像技术的油菜病害监测机理与方法研究[D].杭州:浙江大学,2016.] [110]Feng Jie.Multispectral Imaging System for the Plant Diseases and Insect Pests Diagnosis[J].Spectral and Spectral Analysis,2009,29(4):1008-1012.[冯洁.用于植物病虫害诊断的多光谱成像系统[J].光谱学与光谱分析,2009,29(4):1008-1012.]
[1] 胡根生,吴问天,黄文江,梁栋,黄林生. 粒子群优化的最小二乘支持向量机在小麦白粉病监测中的应用[J]. 遥感技术与应用, 2017, 32(2): 299-304.
[2] 周春艳,厉青,张丽娟,马鹏飞,陈辉,王中挺. 遥感监测2005~2015年中国NO2时空特征及分析影响因素[J]. 遥感技术与应用, 2016, 31(6): 1190-1200.
[3] 张永宏,任伟,曹庭,田伟,王剑庚,卢晶. FY-3/VIRR资料积雪多阈值综合判识方法研究[J]. 遥感技术与应用, 2015, 30(6): 1076-1084.
[4] 唐志光,王建,梁继,李朝奎,王欣. 基于MODIS的青藏高原雪线高度遥感监测[J]. 遥感技术与应用, 2015, 30(4): 767-774.
[5] 郑高强,陈芸芝,汪小钦,陈曦. 基于HJ-1卫星CCD数据的厦门海域叶绿素a浓度反演[J]. 遥感技术与应用, 2015, 30(2): 235-241.
[6] 权文婷,周辉. HJ星数据在关中冬小麦种植面积遥感监测中的应用 [J]. 遥感技术与应用, 2014, 29(6): 930-934.
[7] 陈国茜,周秉荣,胡爱军. 垂直干旱指数在高寒农区春旱监测中的应用研究[J]. 遥感技术与应用, 2014, 29(6): 949-953.
[8] 张薇,杨思全,王磊,李岩. 合成孔径雷达数据减灾应用潜力研究综述[J]. 遥感技术与应用, 2012, 27(6): 904-911.
[9] 翟孟源,徐新良,江东,姜小三. 1979~2010年乌海市煤矿开采对生态环境影响的遥感监测[J]. 遥感技术与应用, 2012, 27(6): 933-940.
[10] 于健,杨国范,王颖,王长顺. 基于MODIS数据反演阜新地区土壤水分的研究[J]. 遥感技术与应用, 2011, 26(4): 413-419.
[11] 吴海平, 刘顺喜, 黄世存. 基于HJ-1A/B卫星CCD数据的土地宏观监测试验研究[J]. 遥感技术与应用, 2009, 24(6): 788-792.
[12] 王甡,江南,胡斌,魏清宇. 太湖蓝藻水华遥感监测信息系统设计及其关键技术[J]. 遥感技术与应用, 2009, 24(3): 304-311.
[13] 章伟伟,过仲阳,夏艳. 利用MODIS监测沙尘暴的影响范围[J]. 遥感技术与应用, 2008, 23(6): 682-685.
[14] 张红卫,陈怀亮,申双和,周官辉,余卫东. 基于表层水分含量指数(SWCI)的土壤干旱遥感监测[J]. 遥感技术与应用, 2008, 23(6): 624-628.
[15] 吴孟泉,崔青春,张丽,赵娜. 复杂山区烟草种植遥感监测及信息提取方法研究[J]. 遥感技术与应用, 2008, 23(3): 305-309.