Please wait a minute...
img

官方微信

遥感技术与应用  2019, Vol. 34 Issue (2): 303-312    DOI: 10.11873/j.issn.1004-0323.2019.2.0303
模型与反演     
基于植被指数季节变化曲线的年总初级生产力估算
张赫林1,2,彭代亮1,张肖1,范海生3,徐富宝1,叶回春1,王大成1
(1.中国科学院遥感与数字地球研究所数字地球重点实验室,北京 100094;
2.重庆交通大学建筑与城市规划学院,重庆 400074;
3.珠海欧比特宇航科技股份有限公司卫星大数据事业部,广东 珠海 519080)
Annual Total Gross Primary Production Estimation based on Vegetation Indices Seasonal Variation Curve
Zhang Helin1,2,Peng Dailiang1,Zhang Xiao1,Fan Haisheng3,Xu Fubao1,Ye Huichun1,Wang Dacheng1
(1.Key Laboratory of Digital Earth Science,Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences,Beijing 100094,China;
2.College of Architecture and Urban Planning,Chongqing Jiaotong University,Chongqing 400074,China;
3.Department of Satellite Big Data Business,Zhuhai Orbita Aerospace Science &Technology Co.,ltd.,Zhuhai 519080,China)
 全文: PDF(13782 KB)  
Abstract: For the estimation of annual Gross Primary Productivity(GPP),it is proposed an estimation method with simple parameters and small errors.By taking each type of vegetation in the area of Three-North Shelterbelt Program(TNSP) as the research subject,the MODIS vegetation indices were obtained,and the seasonal variation curve of vegetation indices were built.Then,the fitting relation between the integral of time series vegetation indices(ΣVIs) and GPP products of MODIS was established,so as to realize a simple GPP estimation method and study the applicable ΣVIs for estimating the GPP of all vegetation types.The results show that:(1) ΣVIs is suitable for estimating the annual total GPP in research area and significantly correlated with MODIS GPP at the confidence level of p<0.01;(2) ΣEVI2 is applicable to estimate the GPP of evergreen needleleaf forest,decidious needleleaf forest,decidious broadleaf forest,mixed forest,woody savannas,savannas,permanent wetlands,croplands,croplands/natural vegetation mosaic,while the effect of ΣNDVI for estimating the GPP of closed shrublands,open shrublands,grasslands,croplands,and barren or sparsely vegetated is superior to ΣEVI andΣEVI2;(3) Since the NDVI itself is saturated in the area of high Leaf Area Index(LAI),the error of estimating the GPP of high LAI vegetation type by ΣNDVI is larger,while using ΣEVI and ΣEVI2 to estimate them has better accuracy,and the limitation from blue band of EVI2 reduces compared with EVI,which can be applied to the GPP research of long time series better.


Key words: GPP    Three-North Shelterbelt    NDVI    EVI    EVI2    Time Series Curve Integral
收稿日期: 2018-04-17 出版日期: 2019-05-10
ZTFLH:  TP79  
基金资助: 国家自然科学基金项目(41571423),中国科学院战略性先导科技专项(XDA19080304、XDA19070203),国网经研院自主投入科技项目(ZZKJ-2018-10)。
作者简介: 张赫林(1994-),男,内蒙古呼伦贝尔人,硕士研究生,主要从事遥感监测方面的研究。E-mail:1656227412@qq.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

张赫林, 彭代亮, 张肖, 范海生, 徐富宝, 叶回春, 王大成. 基于植被指数季节变化曲线的年总初级生产力估算[J]. 遥感技术与应用, 2019, 34(2): 303-312.

Zhang Helin, Peng Dailiang, Zhang Xiao, Fan Haisheng, Xu Fubao, Ye Huichun. Annual Total Gross Primary Production Estimation based on Vegetation Indices Seasonal Variation Curve. Remote Sensing Technology and Application, 2019, 34(2): 303-312.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2019.2.0303        http://www.rsta.ac.cn/CN/Y2019/V34/I2/303

[1] 李晓慧, 王宏, 李晓兵, 迟登凯, 汤曾伟, 韩重远. 基于多时相Landsat 8 OLI影像的农作物遥感分类研究[J]. 遥感技术与应用, 2019, 34(2): 389-397.
[2] 李伟, 唐伶俐, 吴昊昊, 腾格尔, 周梅. 轻小型无人机载激光雷达系统研制及电力巡线应用[J]. 遥感技术与应用, 2019, 34(2): 269-274.
[3] 丁海宁. 黄土高原土壤铁元素含量遥感反演方法 [J]. 遥感技术与应用, 2019, 34(2): 275-283.
[4] 李春江, 沈国状, 张继超. 基于灰色系统理论的植被物理参数与极化分解参数的关联分析—以鄱阳湖湿地为例[J]. 遥感技术与应用, 2019, 34(2): 284-292.
[5] 宋小霞, 王静, 储小青. 基于多普勒频移的SAR海表流场反演[J]. 遥感技术与应用, 2019, 34(2): 293-302.
[6] 张明月, 张奇栎, 王璐, 田尉霞, 王茂芝. 东北黑土区土壤铬含量高光谱反演研究[J]. 遥感技术与应用, 2019, 34(2): 313-322.
[7] 周玉科. 基于遥感的中国东北植被物候不对称特征分析[J]. 遥感技术与应用, 2019, 34(2): 345-354.
[8] 李嘉玲, 董东林, 林刚, 汪箫悦, 王健, 吴朝阳. 基于NDVI数据的江苏省植被物候变化及其影响因子分析[J]. 遥感技术与应用, 2019, 34(2): 367-376.
[9] 罗庆洲, 朱传武, 王培法. 使用MODIS近红外图像直接计算地表水汽压的研究—以贵州省为例[J]. 遥感技术与应用, 2019, 34(2): 398-403.
[10] 王莹莹, 袁金国, 张莹, 吴朝阳. 中国温带地区植被物候期时空变化特征及对总初级生产力的影响[J]. 遥感技术与应用, 2019, 34(2): 377-388.
[11] 马鹏飞, 厉青, 陈辉, 张丽娟, 张玉环, 王桥, 周春艳, 毛慧琴, 陈翠红, 王中挺. 京津冀及周边地区大气污染防治重点关注区域遥感综合分析[J]. 遥感技术与应用, 2019, 34(2): 404-411.
[12] 王磊, 蒋宗立, 刘时银, 上官冬辉, 张勇. 中巴公路沿线冰川运动特征[J]. 遥感技术与应用, 2019, 34(2): 412-423.
[13] 殷宇威, 唐丹玲, 刘宇鹏. 南海岛礁附近悬浮泥沙时空分布的遥感研究[J]. 遥感技术与应用, 2019, 34(2): 435-444.
[14] 陈思宇, 梁天刚. 基于EVI2和多趋势分析法的高原草地植被物候动态监测研究[J]. 遥感技术与应用, 2019, 34(2): 355-366.
[15] 徐凡, 张雪红, 石玉立. 基于激光雷达和航拍影像的城市地物分类研究[J]. 遥感技术与应用, 2019, 34(2): 253-262.