Please wait a minute...
img

官方微信

遥感技术与应用  2019, Vol. 34 Issue (3): 455-466    DOI: 10.11873/j.issn.1004-0323.2019.3.0455
荧光遥感专栏     
太阳诱导叶绿素荧光的卫星遥感反演方法研究进展
纪梦豪1,2,唐伯惠1,2,李召良1,2,3
 (1.中国科学院地理科学与资源研究所 资源与环境信息系统国家重点实验室,北京100101;
2.中国科学院大学 资源与环境学院,北京100049;
3.中国农业科学院农业资源与农业区划研究所 农业部农业遥感重点实验室,北京100081)
Review of Solar-induced Chlorophyll Fluorescence Retrieval Methods from Satellite Data
Ji Menghao1,2,Tang Bohui1,2,Li Zhaoliang1,2,3
(1.State Key Laboratory of Resources and Environment Information System,Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences,Beijing 100101,China;2.College of Resources and Environment,University of Chinese Academy of Sciences,Beijing 100049,China;3.Key Laboratory of Agricultural Remote Sensing,Ministry of Agriculture/Institute of Agricultural Resources and Regional Planning,Chinese Academy of Agricultural Sciences,Beijing 100081,China)
 全文: PDF(2924 KB)  
摘要:

太阳诱导叶绿素荧光(Solar-Induced Chlorophyll Fluorescence,SIF)是光合作用的副产品,能够提供直观反映与植被光合作用相关的信息,同时也为光合作用和GPP的研究提供了新的手段。近年来,许多基于通量塔的荧光观测系统用于SIF和GPP的关系研究。定量估算SIF对陆地生态系统碳循环、初级生产力(Gross Primary Productionty,GPP)和干旱监测的研究具有重要的意义。综述了现有的卫星遥感SIF反演方法,并依据使用通道的位置将SIF反演方法分为基于夫琅禾费暗线法和基于大气吸收波段法两类;分析了SIF卫星遥感反演与应用存在的问题,主要包括传感器性能误差、云覆盖影响、角度效应影响、真实性检验、降尺度以及日尺度转换等;最后,对今后SIF卫星遥感反演的研究方向进行了展望。

 

关键词:  太阳诱导叶绿素荧光(SIF);夫琅禾费暗线;大气吸收波段;卫星SIF反演方法
    
Abstract: Solar-Induced Chlorophyll Fluorescence (SIF) is a by-product of photosynthesis that provides direct information about vegetation photosynthesis and provides a new way to track photosynthesis and gross primary production.In recent years,there are many tower-based long-term fluorescence observation systems have been installed for studying the relationship between SIF and GPP.The quantitative remote sensing estimation of SIF is critical for terrestrial ecosystem carbon cycling,GPP,and drought monitoring.This paper systematically reviews the current status of satellite-derived SIF methods.Those methods are roughly grouped into two categories:fraunhofer line based method and atmospheric absorption band based method,according to the channels used for SIF retrieval;The problems of satellite SIF retrieval and application are discussed,including the instrumental effect,the daily variation of cloud effect,directional effects,the approaches of accuracy assessment,downscaling and the instantaneous to daily scale conversion;Finally,directions for future research to improve the accuracy of satellite-derived SIF are suggested.
 
Key words: Solar-Induced Chlorophyll Fluorescence (SIF)    Fraunhofer line    Atmosphere absorption band    Satellite-derived SIF methods
收稿日期: 2018-08-19 出版日期: 2019-07-01
ZTFLH:     
基金资助:  国家自然科学基金项目(41571353、41871244)资助。
作者简介: 纪梦豪(1995-),男,安徽亳州人,硕士研究生,主要从事植被遥感研究。E-mail:jmhingf@gmail.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

纪梦豪, 唐伯惠, 李召良. 太阳诱导叶绿素荧光的卫星遥感反演方法研究进展[J]. 遥感技术与应用, 2019, 34(3): 455-466.

Ji Menghao, Tang Bohui, Li Zhaoliang. Review of Solar-induced Chlorophyll Fluorescence Retrieval Methods from Satellite Data. Remote Sensing Technology and Application, 2019, 34(3): 455-466.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2019.3.0455        http://www.rsta.ac.cn/CN/Y2019/V34/I3/455

[1]Meroni M,Rossini M,Guanter L,et al.Remote Sensing of Solar-induced Chlorophyll Fluorescence:Review of Methods and Applications[J].Remote Sensing of Environment,2009,113(10):2037-2051.<br /> [2]Frankenberg C,Berry J.Solar Induced Chlorophyll Fluorescence:Origins,Relation to Photosynthesis and Retrieval[M].Amsterdam:Elsevier,2018:143-162.<br /> [3]Porcar-Castell A,Berry J A.Linking Chlorophyll a Fluorescence to Photosynthesis for Remote Sensing Applications:Mechanisms and Challenges[J].Journal of Experimental Botany,2014,65(15):4065-4095.<br /> [4]Su Gang,Liu Liangyun,Zheng Wengang,et al.Development of a Solar-induced Chlorophyll Fluorescence Monitor based on Fraunhofer Line Princiole[C]∥International Symposium on Intelligent Information Technology in Agriculture,2009,40(S1):248-253.[孙刚,刘良云,郑文刚,等.基于夫琅和费暗线原理的太阳诱导叶绿素荧光仪[C]∥智能化农业信息技术国际学术会议.2009,40(S1):248-253.]<br /> [5]Sanders A F J,Verstraeten W W,Kooreman M L,et al.Spaceborne Sun-induced Vegetation Fluorescence Time Series from 2007 to 2015 Evaluated with Australian Flux Tower Measurements[J].Remote Sensing,2016,8(12):895-918.<br /> [7]Sabater N,Vicente J,Alonso L,et al.Compensation of Oxygen Transmittance Effects for Proximal Sensing Retrieval of Canopy-leaving Sun-induced Chlorophyll Fluorescence[J].Remote Sensing,2018,10(10):1551-1579.<br /> [8]Liu X,Guo J,Hu J,et al.Atmospheric Correction for Tower-based Solar-induced Chlorophyll Fluorescence Observations at O2-A Band[J].Remote Sensing,2019,11(3):355-370.<br /> [9]Frankenberg C,O’Dell C,Guanter L,et al.Remote Sensing of Near-infrared Chlorophyll Fluorescence from Space in Scattering Atmospheres:Implications for its Retrieval and Interferences with Atmospheric CO2 Retrievals[J].Atmospheric Measurement Techniques,2012,5(8):2081-2094.<br /> [10]Yang X,Shi H,Stovall A,et al.FluoSpec 2-An Automated Field Spectroscopy System to Monitor Canopy Solar-Induced Fluorescence[J].Sensors,2018,18(7):2063-2080.<br /> [11]Damm A,Erler A,Hillen W,et al.Modeling the Impact of Spectral Sensor Configurations on the FLD Retrieval Accuracy of Sun-induced Chlorophyll Fluorescence[J].Remote Sensing of Environment,2011,115(8):1882-1892.<br /> [12]Meroni M,Busetto L,Colombo R,et al.Performance of Spectral Fitting Methods for Vegetation Fluorescence Quantification[J].Remote Sensing of Environment,2010,114(2):363-374.<br /> [13]Zhou X,Liu Z,Xu S,et al.An Automated Comparative Observation System for Sun-induced Chlorophyll Fluorescence of Vegetation Canopies[J].Sensors,2016,16(6):775-789.<br /> [14]Joiner J,Yoshida Y,Vasilkov A P,et al.First Observations of Global and Seasonal Terrestrial Chlorophyll Fluorescence from Space[J].Biogeosciences Discussions,2011,8(3):637-651.<br /> [15]Zhang Lifu,Wang Siheng,Huang Changping.Top-of-atmosphere Hyperspectral Remote Sensing of Solar-induced Chlorophyll Fluorescence:A Review of Methods[J].Journal of Remote Sensing,2018,22(1):1-12.[张立福,王思恒,黄长平.太阳诱导叶绿素荧光的卫星遥感反演方法[J].遥感学报,2018,22(1):1-12.]<br /> [16]Malina E,Yoshida Y,Matsunaga T,et al.Information Content Analysis:The Potential for Methane Isotopologue Retrieval from GOSAT-2[J].Atmospheric Measurement Techniques Discussions,2018,11(2):1159-1179.<br /> [17]Eldering A,Taylor T E,O’Dell C W,et al.The OCO-3 Mission:Measurement Objectives and Expected Performance based on 1 Year of Simulated Data[J].Atmospheric Measurement Techniques,2019,12(4):2341-2370.<br /> [18]Kraft S,Bello U D,Bouvet M,et al.FLEX:ESA’s Earth Explorer 8 Candidate Mission[C]∥ IEEE International Geoscience and Remote Sensing Symposium.IEEE,2012:7125-7128.<br /> [19]Zoogman P,Jacob D J,Chance K,et al.Monitoring High-ozone Events in the US Intermountain West Using TEMPO Geostationary Satellite Observations[J].Atmospheric Chemistry and Physics,2014,14(12):6261-6271.<br /> [20]O’Brien D M,Polonsky I N,Utembe S R,et al.Potential of a Geostationary GeoCARB Mission to Estimate Surface Emissions of CO2,CH4 and CO in a Polluted Urban Environment:Case Study Shanghai[J].Atmospheric Measurement Techniques,2016,9(9):4633-4654.<br /> [21]Zhang Zhaoying,Wang Songhan,Qiu Bo,et al.Retrieval of Sun-induced Chlorophyll Fluorescence and Advancements in Carbon Cycle Application[J].Journal of Remote Sensing,2019,23(1):37-52.[章钊颖,王松寒,邱博,等.日光诱导叶绿素荧光遥感反演及碳循环应用进展[J].遥感学报,2019.23(1):37-52.]<br /> [22]Van der Tol C,Verhoef W,Timmermans J,et al.An Integrated Model of Soil-canopy Spectral Radiances,Photosytesis,Fluorescence,Temperature and Energy Balance[J].Biogeosciences,2009,6(12):3109-3129.<br /> [23]Wang Ran,Liu Zhigang,Yang Peiqi.Principle and Progress in Remote Sensing of Vegetation Solar-induced Chlorophyll Fluorescence[J].Advances in Earth Science,2012,27(11):1221-1228.[王冉,刘志刚,杨沛琦.植物日光诱导叶绿素荧光的遥感原理及研究进展[J].地球科学进展,2012,27(11):1221-1228.]<br /> [24]Damm A,Guanter L,Laurent V C E,et al.FLD-based Retrieval of Sun-induced Chlorophyll Fluorescence from Medium Spectral Resolution Airborne Spectroscopy Data[J].Remote Sensing of Environment,2014,147(18):256-266.<br /> [25]Joiner J,Yoshida Y,Vasilkov A P,et al.Filling-in of Near-infrared Solar Lines by Terrestrial Fluorescence and Other Geophysical Effects:Simulations and Space-based Observations from SCIAMACHY and GOSAT[J].Atmospheric Measurement Techniques,2012,5(5):809-829.<br /> [26]Khler P,Guanter L,Frankenberg C.Simplified Physically based Retrieval of Sun-induced Chlorophyll Fluorescence from GOSAT Data[J].IEEE Geoscience and Remote Sensing Letters,2015,12(7):1446-1450.<br /> [27]Guanter L,Frankenberg C,Dudhia A,et al.Retrieval andGlobal Assessment of Terrestrial Chlorophyll Fluorescence from GOSAT Space Measurements[J].Remote Sensing of Environment,2012,121(6):236-251.<br /> [28]Du S,Liu L,Liu X,et al.Retrieval of Global Terrestrial Solar-induced Chlorophyll Fluorescence from TanSat Satellite[J].Science Bulletin,2018,63(22):1502-1512.<br /> [29]Guanter L,Rossini M,Colombo R,et al.UsingField Spectroscopy to Assess the Potential of Statistical Approaches for the Retrieval of Sun-induced Chlorophyll Fluorescence from Ground and Space[J].Remote Sensing of Environment,2013,133(7253):52-61.<br /> [30]Joiner J,Yoshida Y,Guanter L,et al.NewMethods for Retrieval of Chlorophyll Red Fluorescence from Hyper-spectral Satellite Instruments:Simulations and Application to GOME-2 and SCIAMACHY[J].Atmospheric Measurement Techniques,2016,9(8):3939-3967.<br /> [31]Khler P,Frankenberg C,Magney T S,et al.Global Retrievals of Solar-induced Chlorophyll Fluorescence with TROPOMI:First Results and Intersensor Comparison to OCO-2[J].Geophysical Research Letters,2018,45(19):10456-10463.<br /> [32]Joiner J,Guanter L,Lindstrot R,et al.GlobalMonitoring of Terrestrial Chlorophyll Fluorescence from Moderate Spectral Resolution Near-infrared Satellite Measurements:Methodology,Simulations,and Application to GOME-2[J].Atmospheric Measurement Techniques,2013,6(10):2803-2823.<br /> [33]Guanter L,Aben I,Tol P,et al.Potential of the TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor for the Monitoring of Terrestrial Chlorophyll Fluorescence[J].Atmospheric Measurement Techniques,2015,8(3):1337-1352.<br /> [34]Khler P,Guanter L,Joiner J.ALinear Method for the Retrieval of Sun-induced Chlorophyll Fluorescence from GOME-2 and SCIAMACHY Data[J].Atmospheric Measurement Techniques,2015,8(12):2589-2608.<br /> [35]Frankenberg C,Butz A,Toon G C.Disentangling Chlorophyll Fluorescence from Atmospheric Scattering Effects in O2A-band Spectra of Reflected Sun-light[J].Geophysical Research Letters,2011,38(3):445-456.<br /> [36]Wolanin A,Rozanov V V,Dinter T,et al.GlobalRetrieval of Marine and Terrestrial Chlorophyll Fluorescence at its Red Peak Using Hyperspectral Top of Atmosphere Radiance Measurements:Feasibility Study and First Results[J].Remote Sensing of Environment,2015,166:243-261.<br /> [37]Khosravi N,Vountas M,Rozanov V,et al.Retrieval of Terrestrial Plant Fluorescence based on the In-filling of Far-red Fraunhofer Lines Using SCIAMACHY Observations[J].Frontiers in Environmental Science,2015,3:78-90.<br /> [38][JP2]Guanter L,Alonso L,Gómez-Chova L,et al.Estimation of Solar-induced Vegetation Fluorescence from Space Measurements[J].Geophysical Research Letters,2007,34(8):162-179.<br /> [39]Guanter L,Alonso L,Gómez-Chova L,et al.Developments forVegetation Fluorescence Retrieval from Spaceborne High-resolution Spectrometry in the O2-A and O2-B Absorption Bands[J].Journal of Geophysical Research Atmospheres,2010,115(D19):D19303.<br /> [40]Cogliati S,Verhoef W,Kraft S,et al.Retrieval of Sun-induced Fluorescence Using Advanced Spectral Fitting Methods[J].Remote Sensing of Environment,2015,169:344-357.<br /> [41]Frankenberg C,Fisher J B,Worden J,et al.NewGlobal Observations of the Terrestrial Carbon Cycle from GOSAT:Patterns of Plant Fluorescence with Gross Primary Productivity[J].Geophysical Research Letters,2011,38(17):351-365.<br /> [42]Liu X,Liu L.Influence of theCanopy BRDF Characteristics and Illumination Conditions on the Retrieval of Solar-induced Chlorophyll Fluorescence[J].International Journal of Remote Sensing,2018,39(6):1782-1799.<br /> [43]Fournier A,Goulas Y,Daumard F,et al.Effects of Vegetation Directional Reflectance on Sun-induced Fluorescence Retrieval in the Oxygen Absorption Bands[C]∥Proceedings of 5th International Workshop on Remote Sensing of Vegetation Fluorescence,2014:1-5.<br /> [44]Zhang Z,Zhang Y,Joiner J,et al.AngleMatters:Bidirectional Effects Impact the Slope of Relationship between Gross Primary Productivity and Sun-induced Chlorophyll Fluorescence from Orbiting Carbon Observatory-2 Across Biomes[J].Global Change Biology,2018,24(11):5017-5020.<br /> [45]He L,Chen J M,Liu J,et al.Angular Normalization of GOME-2 Sun-induced Chlorophyll Fluorescence Observation as a Better Proxy of Vegetation Productivity[J].Geophysical Research Letters,2017,44(11):5691-5699.<br /> [46]Duveiller G,Cescatti A.SpatiallyDownscaling Sun-induced Chlorophyll Fluorescence Leads to an Improved Temporal Correlation with Gross Primary Productivity[J].Remote Sensing of Environment,2016,182:72-89.<br /> [47]Gentine P,Alemohammad S H.RSIF (Reconstructed Solar Induced Fluorescence):A Machine-learning Vegetation Product based on MODIS Surface Reflectance to Reproduce GOME-2 Solar Induced Fluorescence[J].Geophysical Research Letters,2018,45(7):3136-3146.<br /> [48]Zhang Y,Joiner J,Alemohammad S H,et al.A Global Spatially Contiguous Solar-induced Fluorescence (CSIF) Dataset Using Neural Networks[J].Biogeosciences,2018,15(19):5779-5800.<br /> [49]Yu L,Wen J,Chang C Y,et al.High Resolution Global Contiguous SIF of OCO-2[J].Geophysical Research Letters,2019,46(3):1449-1458.<br /> [50]Li X,Xiao J.A Global,0.05-degree Product of Solar-induced Chlorophyll Fluorescence derived from OCO-2,MODIS,and Reanalysis Data[J].Remote Sensing,2019,11(5):517-530.<br /> [51]Zhang Y,Xiao X,Zhang Y,et al.On the Relationship between Sub-daily Instantaneous and Daily Total Gross Primary Production:Implications for Interpreting Satellite-based SIF Retrievals[J].Remote Sensing of Environment,2018,205:276-89.<br /> [52]Liu L,Zhang Y,Wang J,et al.Detecting Solar-induced Chlorophyll Fluorescence from Field Radiance Spectra based on the Fraunhofer Line Principle[J].IEEE Transactions on Geoscience and Remote Sensing,2005,43(4):827-832.<br /> [53]Daumard F,Champagne S,Fournier A,et al.A Field Platform for Continuous Measurement of Canopy Fluorescence[J].IEEE Transactions on Geoscience and Remote Sensing,2010,48(9):3358-3368.<br /> [54]Van der Tol C,Rossini M,Cogliati S,et al.AModel and Measurement Comparison of Diurnal Cycles of Sun-induced Chlorophyll Fluorescence of Crops[J].Remote Sensing of Environment,2016,186:663-677.<br /> [55]Hu J,Liu L,Guo J,et al.Upscaling Solar-induced Chlorophyll Fluorescence from an Instantaneous to Daily Scale Gives an Improved Estimation of the Gross Primary Productivity[J].Remote Sensing,2018,10(10):1663-1682.<br /> [56]Sun Y,Frankenberg C,Wood J D,et al.OCO-2 Advances Photosynthesis Observation from Space Via Solar-induced Chlorophyll Fluorescence[J].Science,2017,358(6360):5747.doi:10.1126/science.aam5747.<br /> [57]Lee J E,Saatchi S.ForestProductivity and Water Stress in Amazonia:Observations from GOSAT Chlorophyll Fluorescence[J].Proceedings of the Royal Society B Biological Sciences,2013,280(1761):176-188.<br /> [58]Wang S,Huang C,Zhang L,et al.Monitoring and Assessing the 2012 Drought in the Great Plains:Analyzing Satellite-retrieved Solar-induced Chlorophyll Fluorescence,Drought Indices,and Gross Primary Production[J].Remote Sensing,2016,8(2):61-77.<br /> [59]Joiner J,Yoshida Y,Vasilkov A P,et al.The Seasonal Cycle of Satellite Chlorophyll Fluorescence Observations and Its Relationship to Vegetation Phenology and Ecosystem Atmosphere Carbon Exchange[J].Remote Sensing of Environment,2014,152:375-391.<br /> [60]Zhao F,Li R,Verhoef W,et al.Reconstruction of the Full Spectrum of Solar-induced Chlorophyll Fluorescence:Intercomparison Study for a Novel Method[J].Remote Sensing of Environment,2018,219:233-246.<br />
[1] 王思恒, 黄长平, 张立福, 高显连, 付安民. 陆地生态系统碳监测卫星远红波段叶绿素荧光反演算法设计[J]. 遥感技术与应用, 2019, 34(3): 476-487.
[2] 田慧慧, 冯 莉, 赵璊璊, 郭 松, 董继伟. 无人机热红外城市地表温度精细特征研究 [J]. 遥感技术与应用, 2019, 34(3): 553-563.
[3] 谷晓天, 高小红, 马慧娟, 史飞飞, 刘雪梅, 曹晓敏. 复杂地形区土地利用/土地覆被分类机器学习方法比较研究[J]. 遥感技术与应用, 2019, 34(1): 57-67.
[4] 李长春, 徐轩, 包安明, 刘雪峰, 杨文攀.  基于FY3B-MWRI数据新疆区域积雪深度反演[J]. 遥感技术与应用, 2018, 33(6): 1030-1036.
[5] 逄锦娇,孙睿,王汶. 高分辨率影像配准误差对土地覆盖分类和变化检测的影响[J]. 遥感技术与应用, 2014, 29(3): 498-505.
[6] 潘佩芬,杨武年,戴晓爱,郑菠. 不同森林植被的高光谱特征分析[J]. 遥感技术与应用, 2013, 28(6): 1000-1005.
[7] 唐晓燕,高昆,倪国强. 高光谱图像非线性解混方法的研究进展[J]. 遥感技术与应用, 2013, 28(4): 731-738.
[8] 赵晶晶, 李晓松, 黄慧萍, 裴亮, 吴炳方. 基于TM6的城市居民建筑节能研究[J]. 遥感技术与应用, 2009, 24(6): 766-771.
[9] 李娜, 颜长珍. 利用MODIS植被指数评估分水对黑河中游的影响[J]. 遥感技术与应用, 2009, 24(6): 793-796.
[10] 王彦, 李文芯. 遥感及部分相关学科SCI收录期刊介绍[J]. 遥感技术与应用, 2009, 24(6): 855-858.
[11] 高娜, 石韧, 颉耀文. 落叶松早落病危害的光谱特征及与叶绿素浓度的关系研究[J]. 遥感技术与应用, 2007, 22(6): 710-714.
[12] 姜立鹏, 覃志豪, 谢 雯. 针对MODIS 数据的地表温度非线性迭代反演方法[J]. 遥感技术与应用, 2006, 21(6): 483-487.
[13] 喻林青, 鲁安新, 冉德甫, 王丽红, 张世强. 国道214 线西藏境滑塌灾害遥感调查研究[J]. 遥感技术与应用, 2006, 21(6): 517-520.
[14] 李守波, 赵传燕. 基于能量平衡的关川河流域蒸散发的遥感反演[J]. 遥感技术与应用, 2006, 21(6): 521-526.
[15] 张 峰, 王 桥, 王文杰, 申文明, 罗海江, 刘晓曼. 美国高分辨率土地覆盖信息提取技术研究进展[J]. 遥感技术与应用, 2006, 21(6): 593-600.