遥感技术与应用 2019, Vol. 34 Issue (4): 685-693 DOI: 10.11873/j.issn.1004-0323.2019.4.0685 |
|
|
深度学习在GlobeLand30-2010产品分类精度优化中应用研究 |
刘天福1( ),陈学泓1,2( ),董琪1,曹鑫1,2,陈晋1,2 |
1. 地表过程与资源生态国家重点实验室 北京师范大学地理科学学部,北京 100875 2. 北京市陆表遥感数据产品工程技术研究中心 北京师范大学地理科学学部,北京 100875 |
|
Application of Deep Learning in GlobeLand30-2010 Product Refinement |
Tianfu Liu1( ),Xuehong Chen1,2( ),Qi Dong1,Xin Cao1,2,Jin Chen1,2 |
1. State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China 2. Beijing Engineering Research Center for Globe Land Remote Sensing Products, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China |
引用本文:
刘天福,陈学泓,董琪,曹鑫,陈晋. 深度学习在GlobeLand30-2010产品分类精度优化中应用研究[J]. 遥感技术与应用, 2019, 34(4): 685-693.
Tianfu Liu,Xuehong Chen,Qi Dong,Xin Cao,Jin Chen. Application of Deep Learning in GlobeLand30-2010 Product Refinement. Remote Sensing Technology and Application, 2019, 34(4): 685-693.
链接本文:
http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2019.4.0685
或
http://www.rsta.ac.cn/CN/Y2019/V34/I4/685
|
1 |
TurnerB L, LambinE F, ReenbergA. The Emergence of Land Change Science for Global Environmental Change and Sustainability[J]. Proceedings of the National Academy of Sciences, 2007, 104(52): 20666-20671.
|
2 |
ChenJ, ChenJ, LiaoA, et al. Global Land Cover Mapping at 30 m Resolution: A POK-based Operational Approach[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 103: 7-27.
|
3 |
MaX, TongX, LiuS, et al. Optimized Sample Selection in SVM Classification by Combining with DMSP-OLS, Landsat NDVI and GlobeLand 30 Products for Extracting Urban Built-up Areas[J]. Remote Sensing, 2017, 9(3): 236.doi: 10.3390/rs9030236.
doi: 10.3390/rs9030236
|
4 |
ChenJun, ChenJin, LiaoAnping, et al. Concepts and Key Techniques for 30 m Global Land Cover Mapping[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(6):551-557.
|
4 |
陈军, 陈晋, 廖安平, 等. 全球30 m地表覆盖遥感制图的总体技术[J]. 测绘学报, 2014, 43(6): 551-557.
|
5 |
ZhangWeiwei, ChenJun, LiaoAnping, et al. Geospatial Knowledge-based Verification and Improvement of Globeland30[J]. Science China Earth Sciences, 2016, 46(9): 1149-1161.
|
5 |
张委伟, 陈军, 廖安平, 等. 顾及多元知识的 GlobeLand30检核优化模型[J]. 中国科学:地球科学, 2016, 46(9): 1149-1161.
|
6 |
YangY, XiaoP, FengX, et al. Accuracy Assessment of Seven Global Land Cover Datasets over China[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 125: 156-173.
|
7 |
HuangX, LiQ, LiuH, et al. Assessing and Improving the Accuracy of GlobeLand 30 Data for Urban Area Delineation by Combining Multisource Remote Sensing Data[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12): 1860-1864.
|
8 |
FonteC, MinghiniM, PatriarcaJ, et al. Generating Up-to-Date and Detailed Land Use and Land Cover Maps Using Open Street Map and GlobeLand30[J]. ISPRS International Journal of Geo-Information, 2017, 6(4): 125-147.
|
9 |
ChenDi, WuWenbin, LuMiao, et al. Progresses in Land Cover Data Reconstruction Method based on Multi-source Data Fusion[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2016, 37(9): 62-70.
|
9 |
陈迪, 吴文斌, 陆苗, 等. 基于多源数据融合的地表覆盖数据重建研究进展综述[J]. 中国农业资源与区划, 2016 (9): 62-70.
|
10 |
YuLe, WangJie, LiXuecao, et al. A Multi-resolution Global Land Cover Dataset through Multi-source Data Aggregation[J]. Science China Earth Sciences, 2014, 44(8): 1646-1660.
|
10 |
俞乐, 王杰, 李雪草, 等. 基于多源数据集成的多分辨率全球地表覆盖制图[J]. 中国科学: 地球科学, 2014, 44(8): 1646-1660.
|
11 |
SeeL, SchepaschenkoD, LesivM, et al. Building a Hybrid Land Cover Map with Crowdsourcing and Geographically Weighted Regression[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 103: 48-56.
|
12 |
FritzS, McCallumI, SchillC, et al. Geo-Wiki. Org: The Use of Crowdsourcing to Improve Global Land Cover[J]. Remote Sensing, 2009, 1(3): 345-354.
|
13 |
LeCunY, BengioY, HintonG. Deep Learning[J]. Nature, 2015, 521(7553): 436.
|
14 |
HeHaiqing, PangYan, ChenXiaoyong. Remote Sensing Image Scene Oriented Convolutional Neural Network Recursive Recognition Model[J]. Remote Sensing Technology and Application,2017,32(6):1078-1082.
|
14 |
何海清, 庞燕, 陈晓勇. 面向遥感影像场景的深度卷积神经网络递归识别模型[J]. 遥感技术与应用, 2017, 32(6): 1078-1082.
|
15 |
TianDeyu, ZhangYaonan, ZhaoGuohui, et al. Convolutional Neural Network for Remote Sensing Plant Cover Extracting[J]. Remote Sensing Technology and Application,2018,33(1):151-157.
|
15 |
田德宇, 张耀南, 赵国辉, 等. 基于卷积神经网络的遥感沙漠绿地提取方法[J]. 遥感技术与应用, 2018, 33(1): 151-157.
|
16 |
SchmidhuberJ. Deep Learning in Neural Networks: An Overview[J]. Neural Networks, 2015, 61: 85-117.
|
17 |
HuJ, JiangT, TongX, et al. A Benchmark for Scene Classification of High Spatial Resolution Remote Sensing Imagery[C]//2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, 2015: 5003-5006.
|
18 |
ChengG, HanJ, LuX. Remote Sensing Image Scene Classification: Benchmark and State of the Art[J]. Proceedings of the IEEE, 2017, 105(10): 1865-1883.
|
19 |
ZhouW, NewsamS, LiC, et al. PatternNet: A Benchmark Dataset for Performance Evaluation of Remote Sensing Image Retrieval[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 145: 197-209.
|
20 |
NogueiraK, PenattiO A B, dos SantosJ A. Towards Better Exploiting Convolutional Neural Networks for Remote Sensing Scene Classification[J]. Pattern Recognition, 2017, 61: 539-556.
|
21 |
HuF, XiaG S, HuJ, et al. Transferring Deep Convolutional Neural Networks for the Scene Classification of High-resolution Remote Sensing Imagery[J]. Remote Sensing, 2015, 7(11): 14680-14707.
|
22 |
TsendbazarN E, de BruinS, HeroldM. Integrating Global Land Cover Datasets for Deriving User-specific Maps[J]. International Journal of Digital Earth, 2017, 10(3): 219-237.
|
23 |
CanzianiA, PaszkeA, CulurcielloE. An Analysis of Deep Neural Network Models for Practical Applications[J]. arXiv Preprint arXiv:1605.07678, 2016.
|
24 |
ZhangH, ZhangL, LiP. Fabric Pattern Classification based on Depth Convolution Neural Network[J]. Basic Sciences Journal of Textile Universities, 2017 (2): 361-265,267.
|
25 |
SzegedyC, VanhouckeV, IoffeS, et al. Rethinking the Inception Architecture for Computer Vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 2818-2826.
|
26 |
ShenZ, LiuZ, LiJ, et al. Dsod: Learning Deeply Supervised Object Detectors from Scratch[C]//Proceedings of the IEEE International Conference on Computer Vision. 2017: 1919-1927.
|
27 |
SongX, HerranzL, JiangS. Depth CNNs for RGB-D Scene Recognition: Learning from Scratch Better than Transferring from RGB-CNNs[C]//Thirty-First AAAI Conference on Artificial Intelligence. 2017.
|
28 |
YiD, LeiZ, LiaoS, et al. Learning Face Representation from Scratch[J]. arXiv Preprint arXiv:1411.7923, 2014.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|