Please wait a minute...
img

官方微信

遥感技术与应用  2019, Vol. 34 Issue (4): 766-774    DOI: 10.11873/j.issn.1004-0323.2019.4.0766
作物信息提取专栏     
不同生育期倒伏胁迫下玉米叶面积指数高光谱响应解析
周龙飞1,2,3,4(),张云鹤5,成枢4,顾晓鹤1,2,3(),杨贵军1,2,3,孙乾1,2,3,4,束美艳1,2,3,4
1. 农业部农业遥感机理与定量遥感重点实验室 北京农业信息技术研究中心, 北京 100097
2. 国家农业信息化工程技术研究中心,北京 100097
3. 北京市农业物联网工程技术研究中心,北京 100097
4. 山东科技大学测绘科学与工程学院,山东 青岛 266590
5. 北京农业智能装备技术研究中心,北京 100097
Analysis of Hyperspectral Response of Maize Leaf Area Index under Lodging Stress under Different Frowth Stages
Longfei Zhou1,2,3,4(),Yunhe Zhang5,Shu Cheng4,Xiaohe Gu1,2,3(),Guijun Yang1,2,3,Qian Sun1,2,3,4,Meiyan Shu1,2,3,4
1. Key Laboratory of Quantitative Remote Sensing in Agriculture of Ministry of Agriculture, Beijing Research Center for Information Technology in Agriculture, Beijing 100097, China
2. National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China
3. Beijing Engineering Research Center for Agriculture Internet of Things, Beijing 100097, China
4. College of Geomatics, Shandong University of Science and Technology, Qingdao 266590, China
5. Beijing Research Center of Intelligent Equipment for Agriculture, Beijing 100097, China
 全文: PDF(8088 KB)   HTML
摘要:

为研究倒伏胁迫下不同生育期LAI高光谱响应模型,提高LAI高光谱响应模型精度,获取不同生育期倒伏玉米LAI与冠层光谱反射率,采用6种传统变换方式对高光谱反射率进行处理,构建不同生育期倒伏玉米LAI分期与统一响应模型。研究结果表明:LAI能够直接反映玉米受倒伏胁迫程度及自身恢复能力;传统光谱变换有利于提高光谱同LAI的敏感性及模型响应精度;不同生育期倒伏玉米LAI分期响应模型优于统一响应模型。该结果可有效诊断倒伏胁迫下的玉米叶面积指数,为实现不同生育期倒伏玉米长势精确监测提供理论依据和技术支撑,对玉米倒伏胁迫灾情监测可提供必要的先验知识。

关键词: 玉米倒伏胁迫LAI高光谱不同生育期    
Abstract:

In order to study the hyperspectral response model of LAI in different growth stages under lodging stress and improve the precision of LAI hyperspectral response model, LAI and canopy spectral reflectivity of lodging maize at different growth stages were obtained. Six traditional transformation methods were used to deal with hyperspectral reflectivity, and the LAI stages and unified response models of lodging maize at different growth stages were constructed. The traditional spectral transformation is beneficial to improve the sensitivity of spectrum and LAI and the precision of model response. The LAI stage response model of lodging maize at different growth stages was superior to the unified response model. LAI staging monitoring model of lodging in different growth stages is better than unified monitoring model. The results can effectively diagnose the maize leaf area index under lodging stress, provide theoretical basis and technical support for accurate monitoring of lodging growth in different growth stages, and provide necessary prior knowledge for maize lodging stress monitoring.

Key words: Maize    Lodging stress    LAI    Hyperspectral    Different growth stages
收稿日期: 2019-01-21 出版日期: 2019-10-16
ZTFLH:  S127  
基金资助: 国家自然科学基金项目(41571323);国家自然科学基金项目(41501481);北京市自然科学基金项目(6172011);院创新能力建设专项(KJCX20170705)
通讯作者: 顾晓鹤     E-mail: ZLF9510@163.com;guxh@nercita.org.cn
作者简介: 周龙飞(1995-),男,安徽界首人,硕士研究生,主要从事农业遥感相关研究。E?mail:ZLF9510@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
周龙飞
张云鹤
成枢
顾晓鹤
杨贵军
孙乾
束美艳

引用本文:

周龙飞,张云鹤,成枢,顾晓鹤,杨贵军,孙乾,束美艳. 不同生育期倒伏胁迫下玉米叶面积指数高光谱响应解析[J]. 遥感技术与应用, 2019, 34(4): 766-774.

Longfei Zhou,Yunhe Zhang,Shu Cheng,Xiaohe Gu,Guijun Yang,Qian Sun,Meiyan Shu. Analysis of Hyperspectral Response of Maize Leaf Area Index under Lodging Stress under Different Frowth Stages. Remote Sensing Technology and Application, 2019, 34(4): 766-774.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2019.4.0766        http://www.rsta.ac.cn/CN/Y2019/V34/I4/766

图1  试验区地理位置
图2  抽雄期不同倒伏处理
图3  灌浆期不同倒伏处理
生育期采样小区个数样本数最大值最小值平均值标准差
抽雄期15906.371.752.990.75
灌浆期15453.692.142.980.37
对照组3183.562.483.070.31
表1  试验区样本LAI描述统计
图4  不同生育期倒伏处理LAI动态变化
图5  不同生育期倒伏处理冠层光谱反射率曲线
图6  不同生育期光谱变换与LAI相关性
生育期光谱变换形式模型建模验证
R2RMSER2RMSE

抽雄期

n=90

RY=1.9934+30.0297X570+17.1176X797-18.392X8470.510.500.430.89
RY=2+233394X1042+101434X829-851918X5920.490.610.490.93
GqcY=2.7-192.283X423-574.332X502-314.641X5530.520.490.470.93
1/RY=4.7513-0.0024X570+0.0633X747-0.0649X7970.450.530.470.72
(1/R)Y=4.086-8.54X569+784.645X1273-0.914X14130.570.470.500.87
LogRY=2.2922+3.5107X570-14.6405X747+12.5062X7970.530.490.460.86
(LogR)Y=2-30963X592-24036X632-148094X12730.380.640.530.64

灌浆期

n=45

RY=3.1042+75.934X514-63.8761X694-0.1667X13940.490.300.390.35
RY=2-1011768X488+346249X1291-293886X17010.530.500.480.64
GqcY=3.3918+19.2917X727+61.2472X910+38.5977X10020.330.340.310.26
1/RY=2.5971-0.0052X643+0.0087X698-0.0078X9270.450.310.200.28
(1/R)Y=2.887+34.149X471+209.1X959+45.732X17820.450.310.450.20
LogRY=3.5553+11.6392X646-13.6134X696+1.6202X9270.460.310.230.21
(LogR)Y=2.9-70874.4X488-24756.3X958-82671X17010.530.290.440.30

统一模型

n=153

RY=2.9377+16.4219X570+35.3918X922-40.4395X9970.380.490.340.54
RY=2-90260X529-503099X591-82177X9490.420.650.350.68
GqcY=2.347+276.833X637-10.516X713-22.254X7900.360.500.380.54
1/RY=3.3648-0.0007X570-0.0516X915+0.0501X9650.240.510.290.52
(1/R)Y=3.177-2.21X567+275.282X830+484.548X12730.380.490.360.52
LogRY=3.0063+1.2543X570+13.7051X916-14.6696X9660.310.510.350.50
(LogR)Y=3-31950X459-9256X560-12809X12740.410.510.360.53
表2  不同生育期LAI分期与统一监测模型拟合及验证
1 SuWei, HouNing, LiQi, et al. Retrieving Leaf Area Index of Corn Canopy based on Sentinel-2 Remote Sensing Image[J].Transactions of the Chinese Society for Agricultural Machinery,2018,49(1): 151~156.
1 苏伟,侯宁,李琪,等.基于Sentinel-2遥感影像的玉米冠层叶面积指数反演[J].农业机械学报,2018,49(1): 151~156.
2 HeJia, LiuBingfeng, LiJun. Monitoring Model of Leaf Area Index of Winter Wheat based on Hyperspectral Reflectance at Different Growth Stages[J]. Transactions of the CSAE, 2014,30(24): 141~150.
2 贺佳,刘冰锋,李军.不同生育时期冬小麦叶面积指数高光谱遥感监测模型[J].农业工程学报,2014,30(24): 141~150.
3 YangF, SunJ L, FangH L, et al. Comparison of Different Methods for Corn LAI Estimation over Northeastern China[J]. International Journal of Applied Earth Observation and Geoinformation,2012, 18: 462–471.
4 ZhaiYujuan, ZhangYanhong, LiuZhaoli, et al. Study on Inversion Model of Maize LAI based on Hyperspectral Images[J]. Acta Agriculturae Jiangxi, 2015,27(10):58-61.
4 翟羽娟,张艳红,刘兆礼,等.基于高光谱影像的玉米LAI反演模型研究[J].江西农业科学,2015,27(10):58-61.
5 LiuJun, PangXin, LiYanrong, et al. Inversion Study on Leaf Area Index of Summer Maize Using Remote Sensing[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016,47(9):309-317.
5 刘珺,庞鑫,李彦荣,等.夏玉米叶面积指数遥感反演研究[J].农业机械学报,2016,47(9):309-317.
6 HanL, YangG J, FengH K. Quantitative Identification of Maize Lodging-Causing Feature Factors Using Unmanned Aerial Vehicle Images and a Nomogram Computation[J]. Remote Sensing, 2018,10(10):1528.doi:10.3390/YS10101528.
doi: 10.3390/YS10101528
7 WangMeng, ZhangJie, LiangShouzhen, et al. Character Analysis of the Canopy Spectral Changes after Corn lodging[J]. Journal of Anhui Agricultural Sciences, 2014, 42(31): 11187-11188,11201.
7 王猛,张杰,梁守真,等.玉米倒伏后冠层光谱变化特征分析[J].安徽农业科学, 2014, 42(31): 11187-11188,11201.
8 CuiHuaiyang, XuHui, ZhangWei, et al. Yield Estimation Model of Lodging Winter Wheat based on Hyperspectral Remote Sensing[J]. Journal of Triticeae Crops, 2015,35(8):1155-1160.
8 崔怀洋,徐晖,张伟,等.基于高光谱的倒伏冬小麦产量预测模型研究[J].麦类作物学报,2015,35(8):1155-1160.
9 LiuK , ZhouQ B , WuW B , et al. Estimating the Crop Leaf Area Index Using Hyperspectral Remote Sensing[J]. Journal of Integrative Agriculture, 2016, 15(2):475-491.
10 LiangL, DiL P, ZhangL P, et al. Estimation of Crop LAI Using Hyperspectral Vegetation Indices and a Hybrid Inversion Method[J]. Remote Sensing of Environment, 2015, 165:123-134.
11 XinMingyue, YinHong, ChenLong, et al. Estimation of Rice Canopy LAI with Different Growth Stages based on Hyperspectral Remote Sensing Data[J]. Chinese Journal of Agrometeorology, 2015,36(6):762-768.
11 辛明月,殷红,陈龙,等.不同生育期水稻叶面积指数的高光谱遥感估算模型[J].中国农业气象, 2015,36(6):762-768.
12 ZhaoJuan, HuangWenjiang, ZhangYaohong, et al. Inversion of Leaf Area Index during Different Growth Stages in Winter Wheat[J]. Spectroscopy and Spectral Analysis, 2013,33(9):2546-2552.
12 赵娟,黄文江,张耀鸿,等.冬小麦不同生育时期叶面积指数反演方法[J].光谱学与光谱分析,2013,33(9):2546-2552.
13 FengR, ZhangY S, YuW Y, et al. Analysis of the Relationship between the Spectral Characteristics of Maize Canopy and Leaf Area Index under Drought Stress[J]. Acta Ecologica Sinica, 2013, 33(6):301-307.
14 WangLihui, DuJun, HuangJinliang, et al. Retrieving Leaf Area Index of Maize based on GF-1 Multispectral Remote Sensing Data[J].Journal of Central China Normal University(Nat.Sci)2016,50(1):120-127.
14 王立辉,杜军,黄进良,等.基于GF-1号卫星WFV数据反演玉米叶面积指数[J].华中师范大学学报(自然科学版),2016,50(1):120-127.
15 HuangChudi, LuLei, LiuYong, et al. Inversion of Maize field Leaf Area Index based on High-resolution Remote Sensing Image[J]. Acta Agriculturae Zhejiang, 2018,30(2):339-349.
15 黄楚荻,鲁蕾,刘勇,等.基于高分辨率遥感影像的玉米田叶面积指数反演[J].浙江农业学报,2018,30(2):339-349.
16 LinYuefeng, LiuQinhuo, LiJing, et al. Estimation of Corn LAI by Synergy Multi-spectral and SAR Remote Sensing Data based on Least Squares Method[J]. Remote Sensing Technology and Application, 2016,31(4):691-701.
16 林岳峰,柳钦火,李静,等.最小二乘法联合光学与雷达遥感数据估算玉米叶面积指数[J].遥感技术与应用,2016,31(4):691-701.
17 WangLi'ai, ZhouXudong, ZhuXinkai, et al. Inverting Wheat Leaf Area Index based on HJ-CCD Remote Sensing Data and Random Forest Algorithm[J].Transactions of the CSAE, 2016,32(3):149-154.
17 王丽爱,周旭东,朱新开,等.基于HJ-CCD数据和随机森林算法的小麦叶面积指数反演[J].农业工程学报,2016,32(3):149-154.
18 ZhuQiuming, DengCuiting, YeJunxi, et al. Relationships between Rice Leaf Area Index and Yield at Different Growth Stages[J]. Journal of Zhongkai University of Agriculture and Engineering,2016,29(3):17-21.
18 朱秋明,邓翠婷,叶俊希,等.不同生育期水稻叶面积指数与产量的关系[J].仲恺农业工程学院学报,2016,29(3):17-21.
19 SunLi, ChenXi, BaoAnming, et al. Analysis of Correlation for Cotton Leaf Hyperspectral Data and Physiology Parameters in Different Growing Stage[J].Arid Land Geography, 2004,27(1):124-129.
19 孙莉,陈曦,包安明,等.棉花各生育期高光谱数据与叶片生物物理生物化学量的相关分析[J].干旱区地理,2004,27(1):124-129.
20 MaYanping, BaiYoulu, GaoXiangzhao, et al. Investigation of the Method for Measurement of Corn leaf Area based on Image[J].Chinese Agricultural Science Bulletin, 2009,25(22):329-334.
20 马彦平,白由路,高祥照,等.基于数字图像的玉米叶面积测量方法研究[J].中国农学通报,2009,25(22):329-334.
21 LiuZhandong, XiaoJunfu, JiqinNan , et al. Effect of Different Levels Lodging on Leaf Area Index, Yield and Its Components of Summer Maize[J].Chinese Agricultural Science Bulletin, 2010,26(18):107-110.
21 刘战东,肖俊夫,南纪琴,等.倒伏对下玉米叶面积、产量及其构成因素的影响[J].中国农学通报,2010,26(18):107-110.
22 WangLizhi. Hyperspectral Response Mechanism Analysis of Maize Population Growth Index Under Lodging Stress[D]. Jiaozuo: Henan Polytechnic University,2017.
22 王立志.倒伏胁迫下的玉米群体生长指标高光谱响应机理解析[D].焦作:河南理工大学, 2017.
23 ZhaoJiajia, FengMeichen, YangWude, et al. Canopy Spectral and Red Edge Characteristics of Winter Wheat under Lodging Stress[J]. Journal of Shanxi Agricultural Sciences, 2015, 43(6): 673-676.
23 赵佳佳,冯美臣,杨武德,等.倒伏胁迫下冬小麦冠层光谱及红边特征[J].山西农业科学, 2015, 43(6): 673-676.
24 ZhangJiahua, DuYuzhang, LiuXuefeng, et al. Progress in Leaf Area Index Retrieval based on Hyperspectral Remote Sensing and Retrieval Models[J]. Spectroscopy and Spectral Analysis, 2012,32(12): 3319-3323.
24 张佳华,杜育璋,刘学锋,等.基于高光谱数据和模型反演植被叶面积指数的进展[J].光谱学与光谱分析,2012,32(12): 3319-3323.
25 LiFengxiu, ZhangBo, SongKaishan, et al. Research and Analysis of the Correlation between Hyperspectral Vegetation Index and Leaf Area Index[J]. Remote Sensing Technology and Application, 2007,22(5):586-592.
25 李凤秀,张柏,宋开山,等.玉米叶面积指数与高光谱植被指数关系研究[J].遥感技术与应用,2007,22(5):586-592.
26 LiJunling, PengJiyong. Estimation of Winter Wheat LAI at Different Growth Stages based on Canopy Hyperspectral Remote Sensing System[J]. Journal of Triticeae Crops, 2018,38(8):979-987.
26 李军玲,彭记永.不同生育时期冬小麦叶面积指数地面高光谱遥感模型研究[J]. 麦类作物学报,2018,38(8):979-987.
[1] 王思恒, 黄长平, 张立福, 高显连, 付安民. 陆地生态系统碳监测卫星远红波段叶绿素荧光反演算法设计[J]. 遥感技术与应用, 2019, 34(3): 476-487.
[2] 李琼琼, 柳云龙. 城市居民区土壤重金属含量高光谱反演研究[J]. 遥感技术与应用, 2019, 34(3): 540-546.
[3] 云增鑫, 郑光, 马利霞, 王晓菲, 卢晓曼, 路璐. 联合主被动遥感数据定量评价林下植被对叶面积指数估算的影响[J]. 遥感技术与应用, 2019, 34(3): 583-594.
[4] 林沂, 张萌丹, 张立福, 江淼. 高光谱激光雷达谱位合一的角度效应分析[J]. 遥感技术与应用, 2019, 34(2): 225-231.
[5] 丁海宁. 黄土高原土壤铁元素含量遥感反演方法 [J]. 遥感技术与应用, 2019, 34(2): 275-283.
[6] 牟多铎, 刘磊. ELM与SVM在高光谱遥感图像监督分类中的比较研究[J]. 遥感技术与应用, 2019, 34(1): 115-124.
[7] 皋厦, 申鑫, 代劲松, 曹林. 结合LiDAR单木分割和高光谱特征提取的城市森林树种分类[J]. 遥感技术与应用, 2018, 33(6): 1073-1083.
[8] 陈伟民,张凌,宋冬梅,王斌,丁亚雄,许明明,崔建勇. 基于AdaBoost改进随机森林的高光谱图像地物分类方法研究[J]. 遥感技术与应用, 2018, 33(4): 612-620.
[9] 苏阳,祁元,王建华,徐菲楠,张金龙. 基于航空高光谱影像的额济纳绿洲土地覆被提取[J]. 遥感技术与应用, 2018, 33(2): 202-211.
[10] 秦振涛,杨茹,张靖,杨武年. 基于聚类结构自适应稀疏表示的高光谱遥感图像修复研究[J]. 遥感技术与应用, 2018, 33(2): 212-215.
[11] 郭宇柏,卓莉,陶海燕,曹晶晶,王芳. 基于空谱初始化的非负矩阵光谱混合像元盲分解[J]. 遥感技术与应用, 2018, 33(2): 216-226.
[12] 刘爱林,郭宝平,李岩山 . 基于离散粒子群算法的凸多模态高光谱图像端元提取研究[J]. 遥感技术与应用, 2018, 33(2): 227-232.
[13] 吴兴,张霞,孙雪剑,张立福,戚文超. SPARK卫星高光谱数据辐射质量评价[J]. 遥感技术与应用, 2018, 33(2): 233-240.
[14] 宋婷婷,付秀丽,陈玉,魏永明,王钦军,程先锋. 云南个旧矿区土壤锌污染遥感反演研究[J]. 遥感技术与应用, 2018, 33(1): 88-95.
[15] 刘慧珺,苏红军,赵-波. 基于改进萤火虫算法的高光谱遥感多特征优化方法[J]. 遥感技术与应用, 2018, 33(1): 110-118.