Please wait a minute...
img

官方微信

遥感技术与应用  2019, Vol. 34 Issue (4): 816-821    DOI: 10.11873/j.issn.1004-0323.2019.4.0816
模型与反演     
滨海盐渍土可见近红外高光谱特征
张晓光1,2(),姜子璇1,孔繁昌1
1. 青岛农业大学 资源与环境学院, 山东 青岛 266109
2. 中国科学院南京土壤研究所 土壤与农业国家重点实验室,江苏 南京 210008
Hyperspectral Characteristics of Coastal Saline Soil with Visible/near Infrared Spectroscopy
Xiaoguang Zhang1,2(),Zixuan Jiang1,Fanchang Kong1
1. College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
2. State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
 全文: PDF(706 KB)   HTML
摘要:

土壤光谱是遥感监测的物理基础,盐渍化土壤光谱特征研究对于盐渍化土地的监测有着重要的意义。以黄河三角洲地区的滨海盐渍土为研究对象,通过野外土壤样品采集和高光谱测量,研究在去除水分以及剔除土壤质地影响后,不同盐渍化程度的滨海盐渍土在350~1 100 nm区间的高光谱反射和吸收特征,并且试图构建光谱预测模型。结果表明: 平滑后的光谱曲线能更准确有效地描述光谱的反射特征及吸收峰。不同盐化程度的土壤光谱曲线形态一致,但反射率大小差异较大。连续统去除后,490 nm处轻度盐化土吸收最小,在760~920 nm区间重度盐化土的吸收更强烈。原始光谱不能预测土壤盐渍化信息,但是二阶微分变换能够提高波段敏感性,建立的光谱预测模型能够基本满足预测要求。

关键词: 滨海盐渍土高光谱特征可见光短波红外    
Abstract:

Soil spectrum is the physical basis of monitoring with remote sensing, the research of saline soil spectral characteristics is of great significance for monitoring soil salinization. In this paper, coastal saline soil took from the Yellow River delta was selected as the research object. Through field sampled and indoor processing, Indoor spectra(350~1 100 nm) of coastal saline soil were measured. The characteristics of hyperspectral reflectance and absorption with different salinity were studied after eliminating the influence of moisture and soil texture, and then soil spectral prediction model was built. The results show that the reflection characteristics of spectra and the absorption peak could be decrypted more accurate and effective after smoothed spectral curves. The soil spectral curves with different salinity degree were similar and parallel in shape, while there were greatly differences among them. no obvious rule. After continuum removal was applied to soil curves, the absorption of light saline soil was minimal at 490 nm. Absorption of severe saline soil was more intense in 760~920 nm. The original spectrum couldn’t predict soil salinization information, while the transformation of second-order differential could improve sensitivity of spectral data, and spectral prediction model could basically meet prediction requirements.

Key words: Coastal saline soil    Hyperspectral characteristics    Visible/short wave infrared spectroscopy
收稿日期: 2018-06-24 出版日期: 2019-10-16
ZTFLH:  TP79  
基金资助: 国家自然科学基金项目(41601211);土壤与农业国家重点实验室开放基金项目(Y20160007);山东省重点研发计划项目(2017CXGC0303);青岛农业大学高层次人才科研基金项目(1114344);国家级大学生科技创新基金项目(201710435074)
作者简介: 张晓光(1983-),男,山东济南人,博士,讲师,主要从事土壤资源调查与遥感信息提取等方面研究。E?mail:zhangxg_66@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张晓光
姜子璇
孔繁昌

引用本文:

张晓光,姜子璇,孔繁昌. 滨海盐渍土可见近红外高光谱特征[J]. 遥感技术与应用, 2019, 34(4): 816-821.

Xiaoguang Zhang,Zixuan Jiang,Fanchang Kong. Hyperspectral Characteristics of Coastal Saline Soil with Visible/near Infrared Spectroscopy. Remote Sensing Technology and Application, 2019, 34(4): 816-821.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2019.4.0816        http://www.rsta.ac.cn/CN/Y2019/V34/I4/816

图1  平滑前后土壤光谱反射率
图2  不同盐化程度土壤光谱反射率曲线
图3  不同盐化程度土壤连续统去除曲线
图4  土壤盐分与变换光谱相关性
1 LiuG M, YangJ S, HeL D, et al. Salt Dynamics in Soil Profiles during Long-term Evaporation under Different Groundwater Conditions[J]. Plant Biosystems, 2013,147(4):1211-1218.
2 AllbedA, KumarL, AldakheelY Y. Assessing Soil Salinity Using Soil Salinity and Vegetation Indices derived from IKONOS High-spatial Resolution Imageries: Applications in a Date Palm Dominated Region[J]. Geoderma, 2014, 230-231: 1-8.
3 NawarS, BuddenbaumH, HillJ, et al. Modeling and Mapping of Soil Salinity with Reflectance Spectroscopy and Landsat Data Using Two Quantitative Methods (PLSR and MARS). Remote Sensing, 2014,6(11): 10813-10834.
4 RaoB R M,SankarT R,DwivediR S,et al. Spectral Behavior of Salt-affected Soils[J].International Journal of Remote Sensing,1995,16(12) : 2125-2136.
5 FariftehJ,MeerF,MeijdeM,et al. Spectral Characteristics of Salt-affected Soils: A Laboratory Experiment[J].Geoderma,2008,145: 196-206.
6 ShiX Z, AspandiarM, OldmeadowD. Using Hyperspectral Data and PLSR Modelling to Assess acid Sulphate Soil in Subsurface[J]. Journal of Soils and Sediments, 2014,14(5): 904-916.
7 LiuY, PanX Z, WangC K, et al.Predicting Soil Salinity with Vis-NIR Spectra After Removing the Effects of Soil Moisture Using External Parameter Orthogonalization[J]. PLoS One, 2015,10(10):1-10.
8 HuangShuai, DingJianli, LiXiang, et al. Hyperspectral Characteristics Analysis and Modeling of Soil Salinization[J].Chinese Journal of Soil Science, 2016, 47(5): 1042-1048.
8 黄帅,丁建丽,李相,等.土壤盐渍化高光谱特征分析与建模[J].土壤通报, 2016, 47(5): 1042-1048.
9 LiJing, WangKeru, LiShaokun, et al. Cotton Soil Salinity Monitoring based on a Spectrum-Salt Index [J]. Cotton Science, 2014, 26(6):555-562.
9 李静,王克如,李少昆,等.利用光谱-盐分指数监测棉田土壤盐分[J].棉花学报,2014,26(6):555-562.
10 PengJie, ChiChunming, XiangHongying, et al. Inversion of Soil Salt Content based on Continuum-Removal Method [J]. Aata Pedologica Sinica, 2014,51(3):460-469.
10 彭杰,迟春明,向红英,等.基于连续统去除法的土壤盐分含量反演研究[J].土壤学报, 2014,51(3):460-469.
11 GuanHong,JiaKeli,ZhangZhinan,et al.Research on Remote Sensing Monitoring Model of Soil Salinization based on Spectrum Characteristic Analysis [J].Remote Sensing for Land and Resources, 2015,27(2) :100-104.
11 关红,贾科利,张至楠,等.盐渍化土壤光谱特征分析与建模[J].国土资源遥感, 2015,27(2) :100-104.
12 ZhangJunhua, MaTiancheng, JiaKeli. Factors Affecting Spectral Characteristics of Typical Takyr Solonetzs[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(23): 158-165.
12 张俊华,马天成,贾科利. 典型龟裂碱土土壤光谱特征影响因素研究[J]. 农业工程学报, 2014, 30(23): 158-165.
13 LiuHuanjun,ZhangBai,WangZongming,et al. Soil Saline-alkalization Evaluation basing on Spectral Reflectance Characteristics[J]. Journal of Infrared and Millimeter Waves,2008,27(2) : 138-142.
13 刘焕军,张柏,王宗明,等.基于反射光谱特征的土壤盐碱化评价[J].红外与毫米波学报,2008,27(2) : 138-142.
14 HanYang, QinWeichao, WangYeqiao. Study on the Polarized Reflectance Hyperspectral Characteristics and Models of Typical Saline Soil in the West of Jilin Province,China[J]. Spectroscopy and Spectral Analysis, 2014,34(6):1640-1644.
14 韩阳,秦伟超,王野乔.吉林省西部典型盐渍化土壤偏振反射高光谱特征与模型研究[J].光谱学与光谱分析, 2014,34(6):1640-1644.
15 LiuYa, PanXianzhang,WangMiao, alet .Predicting Soil Salinity based on Spectral Symmetry under Wet Soil Condition[J]. Spectroscopy and Spectral Analysis, 2013,33(10):2771-2776.
15 刘娅,潘贤章,王淼,等.土壤湿润条件下基于光谱对称度的盐渍土盐分含量预测[J].光谱学与光谱分析, 2013,33(10):2771-2776.
16 AnDeyu, ZhaoGengxing, ChangChunyan, et al. Estimation of Coastal Saline Soil Salinity in the Yellow River Delta based on Field Hyperspectra[J]. Chinese Journal of Soil Science, 2015,46(4):843-850.
16 安德玉,赵庚星,常春艳,等. 基于野外高光谱的黄河三角洲滨海盐渍土盐分含量估测研究[J].土壤通报, 2015,46(4):843-850.
17 YaoRongjiang, YangJingsong. Analysis on Saliniity Characteristics and Profile Types of Saline Soils in Yellow River Delta[J]. Journal of Arid Land Resources and Environment,. 2007,21(11):106-112.
17 姚荣江,杨劲松.黄河三角洲地区土壤盐渍化特征及其剖面类型分析[J].干旱区资源与环境, 2007,21(11):106-112.
18 LuRukun. Methods of Soil and Agro-Chemical Analysis [M]. Beijing: China Agricultural Science and Technology Press, 2000.
18 鲁如坤. 土壤农化分析方法[M]. 北京: 中国农业科学技术出版社, 2000.
19 WangZunqin, ZhuShouquan,YuRenpei, et al. Saline Soil of China[M]. Beijing: Science Press, 1993:130–216.
19 王遵亲,祝寿泉,俞仁培,等.中国盐渍土[M].北京:科学出版社,1993:130–216.
20 ZhangFei, TiyipTashpoat , DingJianli, et al. The Study on the Reflectance Spectral Characteristic of Salt-Affected Soil in Typical Oasis of the Middle Reaches of Tarim River[J]. Progress in Geography, 2012,31(7):921-932.
20 张飞,塔西甫拉提·特依拜,丁建丽,等.塔里木河中游典型绿洲盐渍化土壤的反射光谱特征[J].地理科学进展, 2012,31(7):921-932.
21 JiWenjun, ShiZhou, ZhouQing, et al. VIS-NIR reflectance Spectroscopy of the Organic Matter in Several Types of soils[J] . Journal of Infrared and Millimeter Waves,2012,31(3 ) : 277-282.
21 纪文君,史舟,周清,等.几种不同类型土壤的 VIS-NIR 光谱特性及有机质响应波段[J].红外与毫米波学报,2012,31(3 ) : 277-282.
22 WangQ, LiP H, MainaJ N,et al. Study of How Salt Types Greatly Shape Soil Reflectance Spectra Versus Salt Concentrations [J]. Soil Science and Plant Analysis, 2013, 44(9) : 1503-1510.
23 LiYan,WangRanghui,GuanYanlong,et al.Prediction Analysis of Soil Total Nitrogen Content Based on Hyperspectral[J]. Remote Sensing Technology and Application,2017,32(1):173-179.
23 李焱,王让会,管延龙,等.基于高光谱反射特性的土壤全氮含量预测分析[J]. 遥感技术与应用, 2017, 32(1): 173-179.
24 LiuYaqiu, ChenHongyan, WangRuiyan, et al. Quantitative Analysis of Soil Salt and Its Main Ions based on Visible/Near Infrared Spectroscopy in Estuary Area of Yellow River[J]. Scientia Agricultura Sinica,2016(10): 1925-1935.
24 刘亚秋,陈红艳,王瑞燕,等.基于可见/近红外光谱的黄河口区土壤盐分及其主要离子定量分析[J]. 中国农业科学,2016(10): 1925-1935.
25 WengY L, GongP, ZhuZ L. A Spectral Index for Estimating Soil Salinity in the Yellow River Delta Region of China Using EO-1 Hyperion Data[J]. Pedosphere, 2010, 20(3): 378-388.
26 AnDeyu,XingQianguo,ZhaoGengxing.Hyperspectral Remote Sensing of Soil Salinity for Coastal Saline Soil in the Yellow River Delta based on HICO Bands[J].Acta Oceanologyca Sinica,2018,40(6):51-59.
26 安德玉,邢前国,赵庚星.基于 HICO波段的滨海土壤盐分遥感反演研究[J].海洋学报,2018,40(6):51-59.
27 WangXiangfeng, MengJihua. Research Progress and Prospect on Soil Nutrients Monitoring with Remote Sensing [J]. Remote Sensing Technology and Application, 2015, 30(6): 1033-1041.
27 王祥峰,蒙继华. 土壤养分遥感监测研究现状及展望[J]. 遥感技术与应用, 2015, 30(6): 1033-1041.
[1] 潘佩芬,杨武年,戴晓爱,郑菠. 不同森林植被的高光谱特征分析[J]. 遥感技术与应用, 2013, 28(6): 1000-1005.