遥感技术与应用 2019, Vol. 34 Issue (5): 970-982 DOI: 10.11873/j.issn.1004-0323.2019.5.0970 |
林业遥感专栏 |
|
|
|
|
基于高分二号遥感影像的树种分类方法 |
李哲,张沁雨,彭道黎( ) |
北京林业大学大学林学院,北京 100083 |
|
Classification Method of Tree Species based on GF-2 Remote Sensing Images |
Zhe Li,Qinyu Zhang,Daoli Peng( ) |
College of Forestry, Beijing Forestry University, Beijing 100083, China |
1 |
Matsuki T, Yokoya N, Iwasaki A. Hyperspectral Tree Species Classification of Japanese Complex Mixed Forest with the Aid of Lidar Data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2015,8(5):1-11.
|
2 |
Lei Guangbin, Li Ainong, Tan Jianbo, et al. Forest Types Mapping in Mountainous Area Using Multi-source and Multi-temporal Satellite Images and Decision Tree Models[J]. Remote Sensing Technology and Application,2016,31(1):31-41.雷光斌,李爱农,谭剑波,等. 基于多源多时相遥感影像的山地森林分类决策树模型研究[J]. 遥感技术与应用,2016,31(1):31-41.
|
3 |
Yan Wei, Zhou Wen, Yi Lilong, et al. Research Progress of Remote Sensing Classification and Change Monitoring of Forest Types[J]. Remote Sensing Technology and Application,2019,34(3):445-454.颜伟,周雯,易立龙,等. 森林类型遥感分类及变化监测研究进展[J]. 遥感技术与应用,2019,34(3):445-454.
|
4 |
Pasquarella V J, Holden C E, Woodcock C E. Improved Mapping of Forest Type Using Spectral-temporal Landsat Features[J]. Remote Sensing of Environment, 2018,210:193-207.
|
5 |
Li Weitao. Forest Vegetation Classification Using High Resolution Remote Sensing Image[D]. Beijing: Beijing Forestry University,2016.李伟涛. 高分辨率遥感森林植被分类提取研究[D]. 北京:北京林业大学,2016.
|
6 |
Immitzer M, Atzberger C, Koukal T. Tree Species Classification with Random Forest Using Very High Spatial Resolution 8-Band WorldView-2 Satellite Data[J]. Remote Sensing,2012,4(9):2661-2693.
|
7 |
Pu R, Landry S. A Comparative Analysis of High Spatial Resolution IKONOS and WorldView-2 Imagery for Mapping Urban Tree Species[J]. Remote Sensing of Environment,2012,124:516-533.
|
8 |
Liu Huaipeng, An Huijun, Wang Bing, et al. Tree Species Classification Using WorldView-2 Images based on Recursive Texture Feature Elimination[J]. Journal of Beijing Forestry University,2015,37(8):53-59.刘怀鹏,安慧君,王冰,等. 基于递归纹理特征消除的WorldView-2树种分类[J]. 北京林业大学学报,2015,37(8):53-59.
|
9 |
Li Dan, Ke Yinghai, Gong Huili, et al. Urban Tree Species Classification with Machine Learning Classifier Using WorldView-2 Imagery[J]. Geography and Geo-information Science,2016,31(2):84-89.李丹,柯樱海,宫辉力,等. 基于高分辨率遥感影像的城市典型乔木树种分类研究[J]. 地理与地理信息科学,2016,32(1):84-89.
|
10 |
Majid I A, Latif Z A, Adnan N A. Tree Species Classification Using Worldview-3 Data[C]∥Shah Alam: University Teknologi Malaysia,2016.
|
11 |
Song Minghui, Object-oriented Urban Land Classification with GF-2 Remote Sensing Image[J]. Remote Sensing Technology and Application,2019,34(3):547-553.[宋明辉. 基于高分二号数据的面向对象城市土地利用分类研究[J]. 遥感技术与应用,2019,34(3):547-553.]
|
12 |
Ma Xiuqiang, Peng Ling, Xu Suning, et al. Application of GF-2 Satellite Data to Mine Geological Environment Investigation in Daye,Hubei Province[J]. Remote Sensing for Land & Resources,2017,29(Sup.1):127-131.马秀强,彭令,徐素宁,等. 高分二号数据在湖北大冶矿山地质环境调查中的应用[J]. 国土资源遥感,2017,29(增刊1):127-131.
|
13 |
Wang Fang, Yang Wunian, Deng Xiaoyu, et al. Discussion on Urban Ecological Land Classification Method based on GF-2 Data[J]. Science of Surveying and Mapping,2018,43(3):71-76.王芳,杨武年,邓晓宇,等. 高分二号数据的城市生态用地分类方法探讨[J]. 测绘科学,2018,43(3):71-76.
|
14 |
Zhu X L, Liu D S. Accurate Mapping of Forest Types Using Dense Seasonal Landsat Time-series[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2014,96(11):1-11.
|
15 |
Howard D M, Wylie B K. Annual Crop Type Classification of the US Great Plains for 2000 to 2011[J]. Photogrammetry and Remote Sensing,2014,80(6):537-549.
|
16 |
Evans T L, Costa M, Tomas W M, et al. Large-scale Habitat Mapping of the Brazilian Pantanal Wetland: A Synthetic Aperture Radar Approach[J]. Remote Sensing of Environment,2014,155:89-108.
|
17 |
Mao Xuegang, Cheng Wenqu, Wei Jingyu, et al. Effect and Evaluation of Segmentation Scale on Object-based Forest Species Classification[J]. Scientia Silvae Sinicae,2017,53(12):73-83.毛学刚,陈文曲,魏晶昱,等. 分割尺度对面向对象树种分类的影响及评价[J]. 林业科学,2017,53(12):73-83.
|
18 |
Zhu Yongsen, Zeng Yongnian, Zhang Meng. Extract of Land Use/Cover Information based on HJ Satellites Data and Object-oriented Classification[J]. Transactions of the Chinese Society of Agricultural Engineering,2017,33(14):258-265.朱永森,曾永年,张猛. 基于HJ卫星数据与面向对象分类的土地利用/覆盖信息提取[J]. 农业工程学报,2017,33(14):258-265.
|
19 |
Hao Long, Chen Yongfu, Liu Hua, et al. Object-oriented Forest Classification of Linzhi County based on CART Decision Tree with Texture Information[J]. Remote Sensing Technology and Application,2017,32(2):386-394.郝泷,陈永福,刘华,等. 基于纹理信息CART决策树的林芝县森林植被面向对象分类[J]. 遥感技术与应用,2017,32(2):386-394.
|
20 |
Phiri D, Morgenroth J, Xu C, et al. Effects of Pre-processing Methods on Landsat OLI-8 Land Cover Classification Using OBIA and Random Forests Classifier[J]. International Journal of Applied Earth Observation and Geoinformation,2018,73:170-178.
|
21 |
Liu Yan. Study on Kernel Function of Support Vector Machine[D]. Xi'an: Xidian University,2012.刘琰. 支持向量机核函数的研究[D]. 西安:西安电子科技大学,2012.
|
22 |
Song Rongjie, Ning Jifeng, Chang Qingrui, et al. Kiwifruit Orchard Mapping based on Wavelet Textures and Random Forest[J]. Transactions of The Chinese Society of Agricultural Machinery, 2018,49(4):222-231.宋荣杰,宁纪锋,常庆瑞,等. 基于小波纹理和随机森林的猕猴桃果园遥感提取[J]. 农业机械学报,2018,49(4):222-231.
|
23 |
Ren Xinyu. Urban Forest Vegetation Classification in Consideration of Vegetation Phenology based on High Spatial Resolution Satellite Imagery[D]. Nanjing: Nanjing Forestry University,2016.任芯雨. 考虑植被季相节律的高分辨率遥感影像城市森林分类[D]. 南京:南京林业大学,2016.
|
24 |
Bai Jinting. The Forest Classification Combining Multidimensional Features based on High-resolution Remote Sensing Images[D]. Beijing: Beijing Forestry University,2016.白金婷. 结合高分辨率遥感影像多维特征的森林分类[D]. 北京:北京林业大学,2016.
|
25 |
Ma Haoran. Object-based Remote Sensing Image Classification of Forest based on Multi-level Segmentation[D]. Beijing: Beijing Forestry University,2014.马浩然. 基于多层次分割的遥感影像面向对象森林分类[D]. 北京:北京林业大学,2014.
|
26 |
Li Chungan. Object-oriented Classification of Forest Cover Using SPOT5 Imagery[D]. Beijing: Beijing Forestry University,2009.李春干. 面向对象的SPOT5图像森林分类研究[D]. 北京:北京林业大学,2009.
|
27 |
Hao Pengyu. Crop Classification Using Time Series Remote Sensing Data[D]. Beijing: Institute of Remote Sensing and Digital Earth,2017.郝鹏宇. 基于多时相遥感数据的农作物分类研究[D]. 北京:中国科学院遥感与数字地球研究所,2017.
|
28 |
Dalponte M, Orka H O, Gobakken T, et al. Tree Species Classification in Boreal Forests with Hyperspectral Data[J]. IEEE Transactions on Geoscience and Remote Sensing,2013,51(5):2632-2645.
|
29 |
Millard K, Richardson M. On the Importance of Training Data Sample Selection in Random Forest Image Classification: A Case Study in Peatland Ecosystem Mapping[J]. Remote Sensing,2015,7(7):8489-8515.
|
30 |
Congalton R G. A Review of Assessing the Accuracy of Classification of Remotely Sensed Data[J]. Remote Sensing of Environment,1991,37:35-46.
|
31 |
Belgiu M, Dragut L. Random Forest in Remote Sensing: A Review of Applications and Future Directions[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2016,114:24-31.
|
32 |
Ghosh A, Joshi P K. A Comparison of Selected Classification Algorithms for Mapping Bamboo Patches in Lower Gangetic Plains Using Very High Resolution WorldView 2 Imagery[J]. International Journal of Applied Earth Observation and Geoinformation,2014,26(1):298-311.
|
33 |
Rodriguez-Galiano V F, Chica-Olmo M, Abarca-Hemandez F, et al. Random Forest Classification of Mediterranean Land Cover Using Multi-seasonal Imagery and Multi-seasonal Texture[J]. Remote Sensing of Environment,2012,121:93-107.
|
34 |
Cheng Ximeng, Shen Zhanfeng, Xing Tingyan, et al. Efficiency and Accuracy Analysis of Multispectral Image Classification based on mRMR Feature Selection Method[J]. Journal of Geo-information Science,2016,18(6):815-823.程希萌,沈占锋,邢廷炎,等. 基于mRMR特征优选算法的多光谱遥感影像分类效率精度分析[J]. 地球信息科学, 2016,18(6):815-823.
|
35 |
Guan H Y, Li J T, Chapman M, et al. Integration of Orthoimagery and LiDAR Data for Object-based Urban Thematic Mapping Using Random Forests[J]. International Journal of Remote Sensing,2013,34(14):5166-5186.
|
36 |
Mishra N B, Crews K A. Mapping Vegetation Morphology Types in a Dry Savanna Ecosystem: Integrating Hierarchical Object-based Image Analysis with Random Forest[J]. International Journal of Remote Sensing,2014,35(3):1175-1198.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|