Please wait a minute...
img

官方微信

遥感技术与应用  2019, Vol. 34 Issue (5): 992-997    DOI: 10.11873/j.issn.1004-0323.2019.5.0992
模型与反演     
基于地面反射波谱技术的锂含量定量反演研究
代晶晶1(),王登红1,令天宇2
1. 中国地质科学院矿产资源研究所 自然资源部成矿作用与资源评价重点实验室,北京 100037
2. 中国地质大学(北京) 地球科学与资源学院, 北京 100083
Quantitative Estimation of Content of Lithium Using Reflectance Spectroscopy
Jingjing Dai1(),Denghong Wang1,Tianyu Ling2
1. MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037,China
2. School of Earth Science and Resource, China University of Geosciences (Beijing), Beijing 100083, China
 全文: PDF(1298 KB)   HTML
摘要:

锂是重要的新兴战略资源,四川甲基卡矿田是中国乃至于世界上锂矿资源最集中的地区之一。运用美国ASD FieldSpec-4便携式红外波谱仪,通过对甲基卡最大的矿脉X03号脉钻孔ZK1101孔的波谱测量,对比分析了含锂辉石伟晶岩、不含锂辉石伟晶岩及围岩的波谱特征,得出锂辉石具有1 413、1 900、2 207 nm三处吸收特征,区分含锂辉石伟晶岩、不含锂辉石伟晶岩及围岩的波谱吸收特征主要位于1 900 nm处,并通过1 900 nm吸收谷的吸收深度与锂含量的相关分析,建立了锂含量定量反演模型。本研究开启了对锂辉石这一标志性找矿矿物波谱特征的新认识,同时为今后锂含量定量评估奠定了高光谱理论基础。

关键词: 甲基卡锂矿反射波谱锂含量定量反演    
Abstract:

Lithium is an important strategic emerging resource. Jiajika ore deposit which is located in Sichuan province becomes one of the richest areas of Liresources in China and even in the world.The spectral measurement of its typical drill hole ZK1101 in the biggest X03 vein was conducted using ASD FieldSpec-4 portable spectroradiometer, and the spectral characteristics of pegmatite containing spodumene, pegmatite without spodumene, surrounding rocks were analyzed. It indicated that the spectrum of spodumene had three absorptions at 1 413 nm, 1 910 nm, 2 207 nm, and the discrimination of these three kinds of rocks was the spectral absorption features on 1 900 nm. Then the quantitative estimation model of lithium was built based on the correlation analysis between absorption depth of 1 900 nm and content of lithium. The study will start a new perspective of spodumene which plays an important role in ore prediction. What’s more, it will provide hyperspectral basis for quantitative estimation of content of lithium in the feature.

Key words: Jiajika    Lithium ore    Reflectance spectra    Content of lithium    Quantitative estimation
收稿日期: 2018-07-24 出版日期: 2019-12-05
ZTFLH:  TP79  
基金资助: 中国地质调查项目“川西甲基卡大型锂矿资源基地综合调查评价”(DD20160055)与“松潘-甘孜成锂带锂铍多金属大型资源基地综合调查评价”(DD20190173)
作者简介: 代晶晶(1982-),女,河南新乡人,博士,副研究员,硕士生导师,主要从事遥感地质研究。E?mail:daijingjing863@sina.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
代晶晶
王登红
令天宇

引用本文:

代晶晶,王登红,令天宇. 基于地面反射波谱技术的锂含量定量反演研究[J]. 遥感技术与应用, 2019, 34(5): 992-997.

Jingjing Dai,Denghong Wang,Tianyu Ling. Quantitative Estimation of Content of Lithium Using Reflectance Spectroscopy. Remote Sensing Technology and Application, 2019, 34(5): 992-997.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2019.5.0992        http://www.rsta.ac.cn/CN/Y2019/V34/I5/992

测量参数参数范围
光谱范围350~2 500 nm
探测器

VNIR (350~1 000 nm)

SWIR1 (1 000~1 830 nm)

SWIR2 (1 830~2 500 nm)

光谱分辨率

3 nm (700 nm)

10 nm (1 400 nm)

10 nm (2 100 nm)

采样间隔

1.4 nm (350~1 000 nm)

2 nm (1 000~2 500 nm)

视场角8°、 18°、 28°
表1  ASDFieldspec-4光谱仪测量参数
图1  ZK110孔含矿伟晶岩、不含矿伟晶岩、围岩的波谱特征

光谱编号

(按深度编号)

1 880 nm

处吸收深度

1 895 nm

处吸收深度

1 900 nm

处吸收深度

JJK1101-2.30.990 950.935 880.055 07
JJK1101-5.60.985 860.915 060.070 8
JJK1101-7.70.996 640.966 320.030 32
JJK1101-9.40.993 530.951 940.041 59
JJK1101-12.30.997 960.962 080.035 88
JJK1101-12.60.961 370.961 64-0.000 27
JJK1101-17.20.995 960.946 940.049 02
JJK1101-23.720.990 860.941 290.049 57
JJK1101-26.30.995 580.952 540.043 04
JJK1101-300.968 730.932 30.036 43
JJK1101-32.850.978 040.904 520.073 52
JJK1101-36.80.992 850.946 90.045 95
JJK1101-41.740.988 310.894 710.093 6
JJK1101-42.970.998 650.977 420.021 23
JJK1101-43.50.997 890.987 670.010 22
JJK1101-43.90.894 560.894 92-0.000 36
JJK1101-49.270.895 250.894 140.001 11
JJK1101-50.90.950 950.947 70.003 25
JJK1101-56.60.875 520.876 69-0.001 17
JJK1101-64.050.883 520.884 42-0.000 9
JJK1101-69.20.912 270.911 810.000 46
JJK1101-69.70.970 970.964 780.006 19
JJK1101-69.80.996 780.976 260.020 52
JJK1101-70.500.978 390.961 040.017 35
JJK1101-70.950.996 140.957 420.038 72
JJK1101-75.750.984 10.886 630.097 47
JJK1101-77.30.988 760.917 280.071 48
JJK1101-79.40.986 740.906 480.080 26
JJK1101-800.887 40.883 190.004 21
JJK1101-80.10.826 660.828 51-0.001 85
JJK1101-85.70.909 110.911 06-0.001 95
JJK1101-860.908 330.907 580.000 75
JJK1101-86.90.897 830.897 250.000 58
JJK1101-1070.974 180.972 350.001 83
JJK1101-107.130.917 090.916 740.000 35
JJK1101-110.770.907 840.908 16-0.000 32
JJK1101-111.070.919 730.919 020.000 71
JJK1101-118.540.877 120.877 45-0.000 33
表2  ZK1101孔38处钻孔1 900 nm波段吸收深度
样品编号岩性

Li含量

/(μg/g)

JJK1101-2.3含锂辉石伟晶岩16 880
JJK1101-5.6含锂辉石伟晶岩17 970
JJK1101-7.7不含锂辉石伟晶岩540
JJK1101-9.4含锂辉石伟晶岩9 878
JJK1101-12.3含锂辉石伟晶岩7 100
JJK1101-12.6不含锂辉石伟晶岩2 212
JJK1101-17.2含锂辉石伟晶岩9 386
JJK1101-23.72含锂辉石伟晶岩15 130
JJK1101-26.3含锂辉石伟晶岩8 202
JJK1101-30含锂辉石伟晶岩5 347
JJK1101-32.85含锂辉石伟晶岩14 060
JJK1101-36.8含锂辉石伟晶岩9 763
JJK1101-41.74含锂辉石伟晶岩9 525
JJK1101-42.97不含锂辉石伟晶岩259
JJK1101-43.5不含锂辉石伟晶岩1 272
JJK1101-43.9不含锂辉石伟晶岩1 195
JJK1101-49.27不含锂辉石伟晶岩574
JJK1101-50.9围岩611
JJK1101-56.6围岩710
JJK1101-64.05围岩626
JJK1101-69.2围岩913
JJK1101-69.7含锂辉石伟晶岩2 645
JJK1101-69.8围岩274
JJK1101-70.50围岩217
JJK1101-70.95含锂辉石伟晶岩9 523
JJK1101-75.75含锂辉石伟晶岩13 990
JJK1101-77.3含锂辉石伟晶岩13 260
JJK1101-79.4含锂辉石伟晶岩7 512
JJK1101-80围岩825
JJK1101-80.1不含锂辉石伟晶岩826
JJK1101-85.7围岩464
JJK1101-86围岩583
JJK1101-86.9围岩580
JJK1101-107围岩32
JJK1101-107.13围岩158
JJK1101-110.77围岩295
JJK1101-111.07围岩195
JJK1101-118.54围岩382
表3  ZK1101孔38处钻孔位置Li的含量
图2  随深度变化的波谱吸收深度和随深度变化的Li含量趋势图
图3  基于波谱吸收深度的锂含量定量反演模型
1 Zhao Jing, Li Haijun, Sun Bo, et al. Determination of Lithium and Strontium at High Concentration by ICP-AES[J]. Spectroscopy and Spectral Analysis, 2012, 32(6):1666-1670.赵静, 李海军, 孙柏, 等. ICP-AES测定卤化物溶液中高浓度锂锶含量的研究[J]. 光谱学与光谱分析, 2012, 32(6):1666-1670.
2 Liu Lijun, Wang Denghong, Hou Kejun, et al. Application of Lithium Isotope to Jiajika New No.3 Pegmatite Lithium Polymetallic Vein in Sichuan[J]. Earth Science Frontiers, 2017, 24(5):167-171.刘丽君, 王登红, 侯可军, 等. 锂同位素在四川甲基卡新三号矿脉研究中的应用[J]. 地学前缘, 2017, 24(5):167-171.
3 Wang Runsheng. Spectral Identification and Inversion of Composition and Component of Objects with Hyperspectral Remote Sensing [J]. Journal of Geo-Information Science, 2009, 11(3):261-267.王润生. 高光谱遥感的物质组分和物质成分反演的应用分析[J]. 地球信息科学学报, 2009, 11(3):261-267.
4 Merrill J, Voisin L, Montenegro V, et al. Slurry Rheology Prediction based on Hyperspectral Characterization Models for Minerals Quantification[J]. Minerals Engineering, 2017, 109: 126-134.
5 Van der Meer F. Near-infrared Laboratory Spectroscopy of Mineral Chemistry: A Review[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 65: 71-78.
6 Van der Meer F. Sequential Indicator Conditional Simulation and Indicator Kriging Applied to Discrimination of Dolomitization in GER 63-Channel Imaging Spectrometer Data[J]. Nonrenewable Resources, 1994, 3: 146-164.
7 Van der Meer F. Spectral Reflectance of Carbonate Mineral Mixtures and Bidirectional Reflectance Theory[J]. Remote Sensing Reviews, 1995, 13: 67-94.
8 Yang K, Browneb P R L, Huntington J F, et al. Characterising the Hydrothermal Alteration of the Broadlands-Ohaaki Geothermal System, New Zealand, Using Short-wave Infrared Spectroscopy[J]. Journal of Volcanology and Geothermal Research, 2001, 106: 53-65.
9 Yang K, Huntington J.F, Gemmell J B,et al.. Variations in Composition and Abundance of White Mica in the Hydrothermal Alteration System at Hellyer, Tasmania, as Revealed by Infrared Reflectance Spectroscopy[J]. Journal of Geochemical Exploration, 2011,108: 143-156.
10 Biel C, Subías I, Acevedo R D, et al. Mineralogical, IR-spectral and Geochemical Monitoring of Hydrothermal Alteration in a Deformed and Metamorphosed Jurassic VMS Deposit at Arroyo Rojo, Tierra delFuego, Argentina[J]. Journal of South American Earth Sciences, 2012, 35: 62-73.
11 Mathian M, Hebert B, Baron F, et al. Identifying the Phyllosilicate Minerals of Hypogene Ore Deposits in Lateritic Saprolites Using the Near-IR Spectroscopy Second Derivative Methodology[J]. Journal of Geochemical Exploration, 2018, 186:298-314.
12 Dai J J, Wang D H, Wang R S, et al. Quantitative Estimation of Concentrations of Dissolved Rare Earth Elements Using Reflectance Spectroscopy[J]. Journal of Applied Remote Sensing, 2013, 7(1): 073513.
13 Dai Jingjing, Wang Denghong, Chen Zhenghui. Reflectance Characteristics of Rare Earth Elements Solutions based on Rare Earth Ore Powder in South Jiangxi Province[J]. Acta Geoscientia Sinica, 2017, 38(4):523-528.代晶晶, 王登红, 陈郑辉. 赣南稀土精矿粉配制的稀土溶液反射波谱特征研究[J]. 地球学报, 2017, 38(4):523-528.
14 Wang Denghong, Fu Xiaofang. A Significant Lithium Resources Discovery in Outside of Jiajika Area, Sichuan[J]. Rock and Mineral Analysis, 2013, 32(6): 987.王登红, 付小方. 四川甲基卡外围锂矿找矿取得突破[J]. 岩矿测试, 2013, 32(6): 987.
15 Fu Xiaofang, Yuan Linping, Wang Denghong, et al. Mineralization Characteristics and Prospecting Model of Newly Discovered X03 Rare Metal Vein in Jiajika Orefield, Sichuan[J]. Mineral Deposits, 2015, 34(6): 1172-1186.付小方, 袁蔺平, 王登红, 等. 四川甲基卡矿田新三号稀有金属矿脉的成矿特征与勘查模型[J]. 矿床地质, 2015, 34(6): 1172-1186.
16 Pan Meng, Tang Yi, Xiao Ruiqing, et al. The Discovery of the Superlarge Li Ore Vein X03 in the Jiajika Ore District[J]. Acta Geologica Sichuan, 2016, 36(3): 422-425.潘蒙, 唐屹, 肖瑞卿, 等. 甲基卡新3号超大型锂矿脉找矿方法[J]. 四川地质学报, 2016, 36(3): 422-425.
17 Jiang Guiying. The Study on Quantitative Measurement and Application for Cotton Cultivating Physiological Indices in Xinjiang by Hyperspectral Remote Sensing[D]. Changsha: Hunan Agriculture University, 2004.蒋桂英. 新疆棉花主要栽培生理指标的高光谱定量提取与应用研究[D]. 长沙: 湖南农业大学, 2004.
18 Xu Qingjun, Ye Fawang, Zhang Chuan, et al. Alteration Information of Drill Core in Baiyanghe Uranium Deposit, Xinjiang Using Hyperspectral Technology[J]. Journal of East China University of Technology, 2016, 39(2): 184-190.
18 徐清俊, 叶发旺, 张川, 等. 基于高光谱技术的钻孔岩心蚀变信息研究: 以新疆白杨河铀矿床为例[J]. 东华理工大学学报(自然科学版), 2016, 39(2): 184-190.
[1] 曾雅琦,王正海,秦昊洋,周桃勇. 结合EEMD和比值导数的岩石-植物混合波谱分解[J]. 遥感技术与应用, 2019, 34(4): 807-815.
[2] 邢立新, 刘嘉宜 . 岩石反射波谱与其化学成分关系研究[J]. 遥感技术与应用, 1999, 14(3): 24-29.
[3] 陈沈斌,钱灿圭,顾连宏,林耀明. 地面反射波谱与卫星磁带记录数据间关系模拟的初步探讨
—以冬小麦和土壤为例
[J]. 遥感技术与应用, 1994, 9(1): 11-17.