Please wait a minute...
img

官方微信

遥感技术与应用  2019, Vol. 34 Issue (5): 1005-1015    DOI: 10.11873/j.issn.1004-0323.2019.5.1005
模型与反演     
Himawari-8气溶胶产品的验证及应用
韦海宁1,2(),王维真1,3(),徐菲楠1,2,冯姣姣1,2
1. 中国科学院西北生态环境资源研究院,中国科学院黑河遥感试验研究站,甘肃省遥感重点实验室,甘肃 兰州 730000
2. 中国科学院大学,北京 100049
3. 中国科学院寒旱区陆面过程与气候变化重点实验室,甘肃 兰州 730000
Evaluation and Application of the Himawari-8 Aerosol Products
Haining Wei1,2(),Weizhen Wang1,3(),Feinan Xu1,2,Jiaojiao Feng1,2
1. Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Chinese Academy of Sciences, Lanzhou 730000, China
 全文: PDF(4986 KB)   HTML
摘要:

为准确分析中国地区气溶胶空间分布与时间变化特征规律,首先利用中国地区9个AERONET(Aerosol Robotic Network)地基站点观测资料对新一代静止气象卫星Himawari-8气溶胶光学厚度(Aerosol Optical Depth, AOD)产品数据进行一致性验证,并在此基础上选取2015年7月至2018年4月Himawari-8逐小时AOD数据分析了中国地区气溶胶光学厚度时空变化特征。结果表明:①Himawari-8 AOD与AERONET AOD之间相关性很高,9个站点的相关系数R在0.64 ~ 0.91之间,拟合曲线斜率k的范围为0.57 ~ 0.68。②Himawari AOD产品与AERONET AOD的相关性在中午时段较其他时段相对较低;北方地区Himawari-8 AOD冬季反演效果与夏季相比较差,南方地区则相反。③中国地区年平均AOD呈东高西低分布,春、夏两季AOD明显高于秋、冬两季,其中夏季最高,春季次之;地区间AOD月变化差异也较大;大部分地区AOD日变化呈现先下降后上升再下降的趋势,AOD最高值出现在午后14 ~ 16时,最低值出现在18时。研究结果为了解中国地区大气气溶胶的时空变化规律和全天时的大气污染监测方法提供新的参考。

关键词: 气溶胶光学厚度Himawari-8AERONET静止气象卫星验证    
Abstract:

To accurately analyze the spatial distribution and temporal variation of the aerosol in China, firstly, the Himawari-8 Level 3 Aerosol Optical Depth (AOD) products were validated by the Level 1.5 AERONET (Aerosol Robotic Network) sunphotometer measurements at 9 observation sites all over the China. Then, the hourly Himawari-8 AOD products from July 2015 to April 2018 were selected for further analyzing the spatial and temporal variation of AOD in China. The result shows that: (1) The Himawari-8 AOD agreed well with those from the AERONET, with a slope of 0.57~0.68 and a high correlation coefficient R ranging from 0.64~0.91. (2) The correlation between Himawari AOD and AERONET AOD is relatively low at noon compared to other time periods; In winter, the AOD estimates from Himawari 8 in the northern regions of China is relative worse than that in summer, but in the southern regions. (3) The values of annual-averaged AOD in China are highest in the eastern regions and lowest in the western regions; the AOD in spring and summer is obviously higher than that in autumn and winter, with the highest in summer and the second in spring. Moreover, the difference in the variation of monthly-averaged AOD between different regions of China was also significant; in most regions, the diurnal variation of daily-averaged AOD showed a trend of decreasing first, then rising and then decreasing. Besides, the highest value of daily AOD appeared at 14~16 in the afternoon, and the lowest value occurred at 18 o’clock. The results from this study can not only provide a new reference for understanding the spatial and temporal variation of atmospheric aerosols in China, but for the air pollution monitoring methods throughout the day.

Key words: Aerosol optical depth    Himawari-8    Geostationary satellite    AERONET    Evaluation
收稿日期: 2018-08-27 出版日期: 2019-12-05
ZTFLH:  TP79  
基金资助: 中国科学院A类战略性先导科技专项(XDA19040500);国家自然科学基金项目(41671373);中国科学院寒旱区陆面过程与气候变化重点实验室自主研究课题(LPCC2019)
通讯作者: 王维真     E-mail: weihaining16@mails.ucas.ac.cn;weizhen@lzb.ac.cn
作者简介: 韦海宁(1994-),男,广西崇左人,硕士研究生,主要从事大气遥感研究。E?mail:weihaining16@mails.ucas.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
韦海宁
王维真
徐菲楠
冯姣姣

引用本文:

韦海宁,王维真,徐菲楠,冯姣姣. Himawari-8气溶胶产品的验证及应用[J]. 遥感技术与应用, 2019, 34(5): 1005-1015.

Haining Wei,Weizhen Wang,Feinan Xu,Jiaojiao Feng. Evaluation and Application of the Himawari-8 Aerosol Products. Remote Sensing Technology and Application, 2019, 34(5): 1005-1015.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2019.5.1005        http://www.rsta.ac.cn/CN/Y2019/V34/I5/1005

站点海拔/m经度/°纬度/°数据时间范围
北京92116.38139.97720150906~20180420
北京大学53116.31039.99220160630~20180508
中国气象局106116.31739.93320150715~20170119
成功大学50120.21723.00020150715~20180430
台湾嘉义27120.49623.49620150715~20180410
香港理工大学30114.18022.30320150715~20180506
太湖20120.21531.42120150715~20180415
香河36116.96239.75420150715~20170506
徐州59117.14234.21720150715~20180508
表1  AERONET站点信息
图1  AERONET AOD与Himawari-8 AOD对比(黑色虚线为1∶1线,红色虚线为拟合曲线)
北京北京大学中国气象局香河成功大学嘉义香港理工大学太湖徐州
00 UTC0.9730.9090.9320.9670.9230.902——0.8630.881
01 UTC0.8990.8580.9010.8960.8670.8410.7120.7730.904
02 UTC0.9060.9610.9360.8770.8590.7580.8710.8160.865
03 UTC0.6730.7250.8870.8580.740.6470.7990.7510.892
04 UTC0.7830.7310.8510.9020.720.650.7950.7230.9
05 UTC0.8880.8720.9370.9510.8340.6930.9010.5860.883
06 UTC0.9170.8870.9390.920.7670.7940.8530.7020.854
07 UTC0.9150.9170.9380.9180.740.8710.8410.7740.883
08 UTC0.9270.8350.9350.9610.870.9290.9020.7850.911
09 UTC0.8750.7150.8450.9590.91——0.9790.6320.838
表2  各时段Himawari-8 AOD与AERONET AOD的相关系数
统计量北京北京大学中国气象局香河成功大学嘉义香港太湖徐州
1月

R

N

0.783

234

0.786

145

0.796

116

0.787

147

0.812

122

0.587

67

0.908

35

0.818

66

0.832

113

2月

R

N

0.808

153

0.846

97

0.546

21

0.848

124

0.633

69

0.743

58

0.791

32

0.659

70

0.864

134

3月

R

N

0.764

95

0.761

14

0.786

58

0.842

141

0.599

167

0.704

62

0.784

16

0.621

39

0.808

154

4月

R

N

0.881

105

0.782

16

0.846

93

0.9

138

0.732

71

0.466

12

0.627

5

0.764

36

0.693

108

5月

R

N

0.858

113

0.64

55

0.862

61

0.945

106

0.833

25

0.85

7

——

0

-0.032

6

0.867

69

6月

R

N

0.986

24

0.887

43

0.952

54

0.892

30

-0.728

9

0.911

7

——

0

-0.431

5

0.886

44

7月

R

N

0.895

12

0.927

33

0.923

24

0.898

29

0.7

26

0.804

17

0.67

14

0.821

115

0.948

18

8月

R

N

0.949

4

0.867

26

0.941

61

0.842

40

0.72

42

0.908

6

0.824

53

0.798

38

0.851

54

9月

R

N

0.948

83

0.919

39

0.944

131

0.949

106

0.577

21

0.797

27

0.818

73

0.751

13

0.927

62

10月

R

N

0.911

100

0.832

59

0.925

84

0.916

118

0.757

86

0.663

30

0.912

24

0.734

91

0.932

131

11月

R

N

0.797

158

0.852

126

0.874

72

0.813

62

0.698

70

0.861

22

0.926

4

0.77

53

0.804

129

12月

R

N

0.526

193

0.577

145

0.779

111

0.816

118

0.64

72

0.724

45

0.892

51

0.916

135

0.788

216

表3  各月份Himawari-8 AOD与AERONET AOD的统计参数
图2  中国地区2015~2018年平均AOD分布
图3  中国地区季节平均AOD分布
图4  典型区域AOD时间序列
1 Zhang Xiaoye, Liao Hong, Wang Fenjuan. The Effects of Aerosols and Clouds on Climate Change and Their Responses[J]. Climate Change Research, 2014, 10(1): 37-39.张小曳, 廖宏, 王芬娟. 对IPCC第五次评估报告气溶胶-云对气候变化影响与响应结论的解读[J].气候变化研究进展, 2014, 10(1): 37-39.
2 Change I P O C. Climate Change 2014: Mitigation of Climate Change[M]. Cambridge: Cambridge University Press, 2015.
3 Zhang Xiaoye. Characteristics of the Chemical Components of Aerosol Particles in the Various Regions over China[J]. Acta Meteorologica Sinica, 2014,72(6): 1108-1117.张小曳. 中国不同区域大气气溶胶化学成分浓度、组成与来源特征[J].气象学报, 2014,72(6): 1108-1117.
4 Zhang Xiaoye, Sun Junying, Wang Yaqiang, et al. Factors Contributing to Haze and Fog in China[J]. Chinese Science Bulletin, 2013, (13): 1178-1187.张小曳, 孙俊英, 王亚强, 等. 我国雾-霾成因及其治理的思考[J]. 科学通报, 2013, (13): 1178-1187.
5 Engel-Cox J A, Holloman C H, Coutant B W, et al. Qualitative and Quantitative Evaluation of MODIS Satellite Sensor Data for Regional and Urban Scale Air Quality[J]. Atmospheric Environment, 2004, 38(16): 2495-2509.
6 Guo J, Xia F, Zhang Y, et al. Impact of Diurnal Variability and Meteorological Factors on the PM2.5 - AOD Relationship: Implications for PM2.5 Remote Sensing[J]. Environmental Pollution, 2017, 221: 94-104.
7 Van Donkelaar A, Martin R V, Park R J. Estimating Ground‐Level PM2. 5 Using Aerosol Optical Depth Determined From Satellite Remote Sensing[J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D21):201-211.
8 You W, Zang Z, Zhang L, et al. A Nonlinear Model for Estimating Ground-Level PM10 Concentration in Xi'an Using MODIS Aerosol Optical Depth Retrieval[J]. Atmospheric Research, 2016, 168: 169-179.
9 Zheng Y, Zhang Q, Liu Y, et al. Estimating Ground-Level PM2. 5 Concentrations over Three Megalopolises in China Using Satellite-Derived Aerosol Optical Depth Measurements[J]. Atmospheric Environment, 2016, 124: 232-242.
10 Zhang X Y, Wang Y Q, Niu T, et al. Atmospheric Aerosol Compositions in China: Spatial/Temporal Variability, Chemical Signature, Regional Haze Distribution and Comparisons with Global Aerosols[J]. Atmospheric Chemistry and Physics, 2012, 12(2): 779-799.
11 Kaufman Y, Wald A, Remer L, et al. Remote Sensing of Aerosol over the Continents with the Aid of a 2.2 μm Channel[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35: 1286-1298.
12 Kaufman Y J, Tanre D, Remer L A, et al. Operational Remote Sensing of Tropospheric Aerosol over Land from EOS Moderate Resolution Imaging Spectroradiometer[J]. Journal of Geophysical Research-Atmospheres, 1997, 102(D14): 17051-17067.
13 Sayer A M, Munchak L A, Hsu N C, et al. MODIS Collection 6 Aerosol Poducts: Comparison between Aqua's e‐Deep Blue, Dark Target, and “Merged” Data Sets, and Usage Recommendations[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(24): 13965-13989.
14 Hu Die, Zhang Lei, Sha Sha, et al. Contrast and Application of MODIS Aerosol Products over the Arid and Semiarid Region in Northwest China[J].Journal of Arid Meteorology, 2013, 31(4): 677-683.
14 胡蝶, 张镭, 沙莎, 等. 西北地区MODIS气溶胶产品的对比应用分析[J干旱气象, 2013, 31(4): 677-683.
15 He Q, Li C, Tang X, et al. Validation of MODIS Derived Aerosol Optical Depth over the Yangtze River Delta in China[J]. Remote Sensing of Environment, 2010, 114(8): 1649-1661.
16 Li C, Lau A K H, Mao J, et al. Retrieval, Validation, and Application of the 1 km Aerosol Optical Depth from MODIS Measurements over HongKong[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(11): 2650-2658.
17 Xie Y, Zhang Y, Xiong X, et al. Validation of MODIS Aerosol Optical Depth Product over China Using CARSNET Measurements[J]. Atmospheric Environment, 2011, 45(33): 5970-5978.
18 Xia X. Significant Overestimation of Global Aerosol Optical Thickness by MODIS over Land[J]. Chinese Science Bulletin, 2006, 51(23): 2905-2912.
19 Wang Hongbin, Zhang Lei, Jiao Shengming, et al. Evaluation of the MODIS Aerosol Products and Analysis of the Retrieval Errors in China[J].Plateau Meteorology,2016,35(3): 810-822.王宏斌, 张镭, 焦圣明, 等. 中国地区MODIS气溶胶产品的验证及反演误差分析[J].高原气象,2016,35(3): 810-822.
20 Zhang Jie, Liu Haoye, Xin Jinyuan,et al. The Comparison of MODIS and MERSI Aerosol Products in Shenyang[J] Journal of Remote Sensing, 2016, 20(4): 549-560
20 [张婕, 刘昊野, 辛金元, 等. 沈阳地区MODIS与MERSI气溶胶产品对比研究[J遥感学报, 2016, 20(4): 549-560].
21 Yang Yikun, Sun Lin, Wei Jing,et al. Verification of MODIS C5 and C6 and Their Regional Adaptability Evaluation[J].Journal of Shandong University of Science and Technology(Natural Science Edition), 2016, 35(5): 17-27
21 [杨以坤, 孙林, 韦晶, 等. MODIS C5、C6气溶胶产品验证及区域适应性评价[J山东科技大学学报(自然科学版), 2016, 35(5): 17-27].
22 Tao M, Wang Z, Tao J, et al. How Do Aerosol Properties Affect the Temporal Variation of MODIS AOD Bias in Eastern China?[J]. Remote Sensing, 2017, 9(8): 800-815.
23 Zheng Xiaobo, Luo Yuxiang, Zhao Tianliang, et al. Geographical and Climatological Characterization of Aerosol Distribution in China[J]. Scientia Geographica Sinica, 2012, 32(3): 265-272.郑小波, 罗宇翔, 赵天良,等. 中国气溶胶分布的地理学和气候学特征[J]. 地理科学, 2012, 32(3): 265-272.
24 Luo Yuxiang, Chen Juan, Zheng Xiaobo.Climatology of Aerosol Optical Depth over China from Recent 10 Years of MODIS Remote Sensing Data[J]. Ecology and Environmental Sciences, 2012,21(5): 876-883.罗宇翔, 陈娟, 郑小波. 近10年中国大陆MODIS遥感气溶胶光学厚度特征[J]. 生态环境学报, 2012,21(5): 876-883.
25 Wang Yinpai, Yu Xin, Xie Guangqi.Spatial Distribution and Temporal Variation of Aerosol Optical Depth over China in the Past 15 Years[J]. China Environmental Science, 2018,38(2): 426-434.王银牌, 喻鑫, 谢广奇. 中国近15年气溶胶光学厚度时空分布特征[J]. 中国环境科学, 2018,38(2): 426-434.
26 Bai L, Xue Y, Cao C, et al. Quantitative Retrieval of Aerosol Optical Thickness from FY-2 VISSR Data[C]∥Sixth International Symposium on Digital Earth: Models, Algorithms, and Virtual Reality, 2010: 784022.
27 Zhang Junhua, Si Zhaojun, Mao Jietai, et al. Remote Sensing Aerosol Optical Depth over China with GMS -5 Satellite[J].Chinese Journal of Atmospheric Sciences, 2003,27(1): 23-35.张军华, 斯召俊, 毛节泰, 等. GMS卫星遥感中国地区气溶胶光学厚度[J]. 大气科学, 2003,27(1): 23-35.
28 Gao Ling, Ren Tong, Li Chengcai, et al.A Retrieval of the Atmospheric Aerosol Optical Depth from MTSAT[J] .Acta Meteorologica Sinica, 2012,70(3): 598-608.高玲, 任通, 李成才, 等. 利用静止卫星MTSAT反演大气气溶胶光学厚度[J]. 气象学报, 2012,70(3): 598-608.
29 Bessho K, Date K, Hayashi M, et al. An Introduction to Himawari-8/9-Japan's New-Generation Geostationary Meteorological Satellites[J]. Journal of the Meteorological Society of Japan, 2016, 94(2): 151-183.
30 Yu F F, Wu X Q. Radiometric Inter-Calibration between Himawari-8 AHI and S-NPP VIIRS for the Solar Reflective Bands[J]. Remote Sensing, 2016, 8(3): 165-181.
31 Kikuchi M, Murakami H, Suzuki K, et al. Improved Hourly Estimates of Aerosol Optical Thickness Using Spatiotemporal Variability Derived From Himawari-8 Geostationary Satellite[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(6): 3442-3455.
32 Holben B N, Eck T F, Slutsker I, et al. AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization[J]. Remote Sensing of Environment, 1998, 66(1): 1-16.
33 F-M Bréon, Vermeulen A, Descloitres J. An Evaluation of Satellite Aerosol Products against Sunphotometer Measurements[J]. Remote Sensing of Environment, 2011, 115(12): 3102-3111.
34 Ichoku C, Chu D A, Mattoo S, et al. A Spatio‐Temporal Approach for Global Validation and Analysis of MODIS Aerosol Products[J]. 2002, 29(12):MOD1-1-MOD1-4.
35 Linke F. Transmission Coefficient and Turbidity Factor[J]. J Beitraege Phys Fr Atom, 1922, 10(2): 91-103.
36 Li C, Mao J, Lau K-H A, et al. Characteristics of Distribution and Seasonal Variation of Aerosol Optical Depth in Eastern China with MODIS Products[J]. Chinese Science Bulletin, 2003, 48(22): 2488-2495.
37 Pan X L, Yan P, Tang J, et al. Observational Study of Influence of Aerosol Hygroscopic Growth on Scattering Coefficient over Rural Area Near Beijing Mega-City[J]. Atmospheric Chemistry and Physics, 2009, 9(19): 7519-7530..
38 Zhang X Y, Wang Y Q, Lin W L, et al. Changes of Atmospheric Composition and Optical Properties over Beijing—2008 Olympic Monitoring Campaign[J]. Bulletin of the American Meteorological Society, 2009, 90(11): 1633-1652.
39 Shi Y, Ge M, Wang W. Hygroscopicity of Internally Mixed Aerosol Particles Containing Benzoic Acid and Inorganic Salts[J]. Atmospheric Environment, 2012, 60: 9-17.
40 Li Jiangnan, Wang Anyu, Meng Weiguang, et al. The Climatological Characteristics of Precipitation of the Presummer Rainy Reason and Second Rainy Season in Guangdong Province[J].Acta Scientiarum Naturalium Universitatis Sunyatseni, 2002, 41(3): 91-94, 98.李江南, 王安宇, 蒙伟光,等. 广东省前汛期和后汛期降水的气候特征[J]. 中山大学学报(自然科学版), 2002, 41(3): 91-94, 98.
41 Qiang Xuemin, YangXiuqun.Onset and End of the First Rainy Season in South China[J].Chinese Journal of Geophysics,2008,51(5): 1333-1345.强学民, 杨修群. 华南前汛期开始和结束日期的划分[J]. 地球物理学报, 2008,51(5): 1333-1345.
[1] 李珊珊,蒋耿明. 基于通用分裂窗算法和Landsat-8数据的地表温度反演研究[J]. 遥感技术与应用, 2018, 33(2): 284-295.
[2] 汤玉明,邓孺孺,刘永明,熊龙海. 大气气溶胶遥感反演研究综述[J]. 遥感技术与应用, 2018, 33(1): 25-34.
[3] 白瑜,孟治国,赵凯. 像元尺度土壤水分监测网络及其对L波段土壤水分产品的初步验证结果[J]. 遥感技术与应用, 2018, 33(1): 78-87.
[4] 陈健,周杰,李雅雯. 基于静止卫星GOCI数据的陆地上空气溶胶光学厚度遥感反演[J]. 遥感技术与应用, 2017, 32(6): 1040-1047.
[5] 陆峥,柴琳娜,张涛,崔慧珍,李婉静. AMSR2土壤水分产品在黑河流域中上游的验证[J]. 遥感技术与应用, 2017, 32(2): 324-337.
[6] 张婕,张文煜,冯建东,王宏义,于泽,宋玮. 基于亮温—植被指数—气溶胶光学厚度的MODIS火点监测算法研究[J]. 遥感技术与应用, 2016, 31(5): 886-892.
[7] 王云龙,黄晓东,邓婕,马晓芳,梁天刚. 欧亚大陆中高纬度区逐日无云积雪产品研发及验证[J]. 遥感技术与应用, 2016, 31(5): 1013-1021.
[8] 张胜敏,周美玲,司一丹,王中挺. 深蓝算法应用于GF-1 16 m相机反演陆地气溶胶[J]. 遥感技术与应用, 2016, 31(4): 709-713.
[9] 邱玉宝,郭华东,石利娟,施建成. 基于AMSR-E的全球陆表被动微波发射率数据集[J]. 遥感技术与应用, 2016, 31(4): 809-819.
[10] 杨勇帅,李爱农,靳华安,尹高飞,赵伟,雷光斌,边金虎. 中国西南山区GEOV1、GLASS和MODISLAI产品的对比分析[J]. 遥感技术与应用, 2016, 31(3): 438-450.
[11] 张璐,施润和,李龙. 基于HJ-1卫星数据反演长江三角洲地区气溶胶光学厚度[J]. 遥感技术与应用, 2016, 31(2): 290-296.
[12] 宋挺,刘军志,胡婷婷,盛世杰,严飞,冬梅,周文麟. MODIS气溶胶光学厚度产品和激光雷达数据在大气颗粒物监测中的应用[J]. 遥感技术与应用, 2016, 31(2): 397-404.
[13] 孙强,吕达仁. 非降水条件下微波辐射计海面风遥感产品性能分析[J]. 遥感技术与应用, 2016, 31(1): 109-118.
[14] 李振旺,唐欢,吴琼,张保辉,辛晓平,杨桂霞. 呼伦贝尔草甸草原MODIS/LAI产品验证[J]. 遥感技术与应用, 2015, 30(3): 557-564.
[15] 何月,张小伟,杜惠良,胡波,高大伟. 利用静止气象卫星监测浙江海上大雾[J]. 遥感技术与应用, 2015, 30(3): 599-606.