Please wait a minute...
img

官方微信

遥感技术与应用  2019, Vol. 34 Issue (5): 1040-1047    DOI: 10.11873/j.issn.1004-0323.2019.5.1040
遥感应用     
影像空间分辨率对蚀变信息提取结果的影响研究
刘磊1(),吴朦朦1,尹翠景1,周军1,2,谢文杨1,尹春涛1
1. 长安大学地球科学与资源学院 自然资源部岩浆作用成矿与找矿重点实验室, 陕西 西安 710054
2. 西安时空地质矿产技术有限公司,陕西 西安 710068
Influence of the Different Spatial Resolutions for Alteration Mineral Mapping
Lei Liu1(),Mengmeng Wu1,Cuijing Yin1,Jun Zhou1,2,Wenyang Xie1,Chuntao Yin1
1. Key Laboratory for the study of Focused Magmatism and Giant Ore Deposits, MNR, School of Earth Sciences and Resources, Chang’an University, Xi’an 710054, China
2. Xi'an Spacetime Geo-mineral Technology Limited, Xi’an 710068, China
 全文: PDF(8092 KB)   HTML
摘要:

脉状蚀变分布广泛且蚀变规模一般较小,遥感影像空间分辨率对此类蚀变提取影响严重。为了评估不同空间分辨率数据对脉状矿化蚀变信息的提取能力,以甘肃北山金滩子地区为例,应用航空高光谱CASI/SASI数据,将像元重采样至5、10、15、20和30 m共5种空间分辨率模式;以JPL光谱库中白云母矿物光谱曲线为参考,利用光谱匹配滤波法提取区内白云母化蚀变。不同规模蚀变带在5种分辨率模式下像元光谱表明:面状蚀变由于面积较大,空间分辨率变化对像元光谱吸收特征影响较小;脉状蚀变带特别是较窄脉状蚀变带随着空间分辨率的降低,混合像元影响越来越强,像元光谱的吸收特征越来越浅,30 m空间分辨率时吸收特征最弱。5种空间分辨率影像的白云母矿物提取结果表明较窄蚀变带(宽约1~5 m)在5~15 m空间分辨率图像中均线状特征明显,在20 m分辨率数据结果中仅断续出现,在30 m空间分辨率结果中仅个别像元被突出。

关键词: 空间分辨率脉状蚀变面状蚀变金滩子地区    
Abstract:

Vein-type alterations are extensively distributed and normally very thin, the extraction of these alteration zones is affected by the spatial resolution of remote sensing data seriously. To evaluate the ability of different spatial resolutions for alteration mineral mapping, taking Jintanzi area as the study area, the pixel of airborne CASI/SASI hyperspectral data were resampled to 5 m, 10 m, 15 m, 20 m and 30 m. The spectrum of muscovite from JPL spectral library and matched filtering method were utilized to extract the distribution of muscovite minerals. Spectra of pixels show that for alteration of large areas the spectral features are influenced weakly by the changing of spatial resolution and all the absorption features could be retained. Comparably, for the thin vein-type alteration, with the degradation of spatial resolution, the effect of the mixed pixel is more serious. Thus, the absorption feature of image spectra is very shallow. When the spatial resolution is 30 m, the absorption is weakest and difficult to be identified. The mapping results of the muscovite show that the thin vein-type alteration (about 1 to 5 meters wide) could be identified in the images with resolution of 5 m, 10 m and 15 m, while it is difficult for the images with resolution of 20 m and 30 m to detect.

Key words: Spatial resolution    Vein-type alteration    Areal alteration    Jintanzi area
收稿日期: 2018-07-24 出版日期: 2019-12-05
ZTFLH:  TP79  
基金资助: 陕西省自然科学基金项目(2018KJXX-062);中央高校基本科研业务费专项资金(310827172006)
作者简介: 刘 磊(1982—),男,黑龙江克东人,博士,教授,博士生导师,主要从事遥感应用研究。E-mail:liul@chd.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘磊
吴朦朦
尹翠景
周军
谢文杨
尹春涛

引用本文:

刘磊,吴朦朦,尹翠景,周军,谢文杨,尹春涛. 影像空间分辨率对蚀变信息提取结果的影响研究[J]. 遥感技术与应用, 2019, 34(5): 1040-1047.

Lei Liu,Mengmeng Wu,Cuijing Yin,Jun Zhou,Wenyang Xie,Chuntao Yin. Influence of the Different Spatial Resolutions for Alteration Mineral Mapping. Remote Sensing Technology and Application, 2019, 34(5): 1040-1047.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2019.5.1040        http://www.rsta.ac.cn/CN/Y2019/V34/I5/1040

图1  野外检查蚀变带照片
样品编号主要矿物含量
J703-DQ1石英(27%)钠长石(8%)绿帘石(65%)///
J703-Qz2石英(49.2%)白云母(50.8%)////
J703-G1-1石英(31%)白云母(20%)钠长石(5%)绿泥石(10%)高岭土(30%)石膏(4%)
J703-G1-2石英(23%)白云母(15%)钠长石(33%)方解石(8%)绿泥石(19%)石膏(2%)
表1  研究区部分野外样品X射线衍射(XRD)测试矿物含量结果
图2  典型野外样品实验室实测光谱曲线和JPL光谱库中3种典型蚀变矿物光谱曲线
图3  金滩子地区CASI/SASI影像
图4  研究区5~30 m空间分辨率影像(a5)~(a30) 较宽脉体5~30 m影像;(b5)~(b30) 较窄脉体5~30 m影像;(c5)~(c30) 面状蚀变目标5~30 m影像
图5  面状蚀变(图3(c)位置)在5种空间分辨率中的像元光谱特征
图6  较宽脉状蚀变带(图3(a)位置)在5种空间分辨率中的像元光谱特征
图8  不同空间分辨率影像白云母提取结果
图7  较窄脉状蚀变带(图3(b)位置)在5种空间分辨率中的像元光谱特征
1 Zhang Yujun, Zeng Chaoming, Chen Wei. The Methods for Extraction of Alteration Anomalies from the ETM+ (TM) Data and Their Application: Method Selection and Technological Flow Chart[J].Remote Sensing for Land & Resources,2003,2:44-49.张玉君,曾朝铭,陈薇.ETM+(TM)蚀变遥感异常提取方法研究与应用——方法选择和技术流程[J].国土资源遥感,2003,2:44-49.
2 Fu B H, Zheng G D, Ninomiya Y, et al. Mapping Hydrocarbon-induced Mineralogical Alteration in the Northern Tian Shan Using ASTER Multispectral Data[J]. Terra Nova,2007,19(4):225-231.
3 Liu L, Zhuang D F, Zhou J, et al. Alteration Mineral Mapping Using Masking and Crosta Technique for Mineral Exploration in Mid-vegetated Areas: A Case Study in Areletuobie, Xinjiang (China)[J]. International Journal of Remote Sensing,2011,32(7):1931-1944.
4 Li Miaomiao, Xing Lixin, Pan Jun, et al. Research of Combinatory Analysis Method in Altered Information Extraction[J]. Remote Sensing Technology and Application,2011,26(3):308-313.李淼淼,刑立新,潘军,等.组合分析蚀变信息提取方法研究[J].遥感技术与应用,2011,26(3):308-313.
5 Pour B A, Hashim M. Identification of Hydrothermal Alteration Minerals for Exploring of Porphyry Copper Deposit Using ASTER Data, SE Iran[J]. Journal of Asian Earth Sciences,2011,42(6):1309-1323.
6 Zhang Yujun, Yao Fojun. Application Study of Multi-spectral ASTER Data for Determination of ETM Remote Sensing Anomaly Property: Taking Wulonggou Region of Eastern Kunlun Mountain Range as Example[J]. Acta Petrologica Sinica,2009,25(4):963-970.张玉君,姚佛军.应用多光谱ASTER数据对ETM遥感异常的定性判别研究——以东昆仑五龙沟为例[J].岩石学报,2009,25(4):963-970.
7 Liu Lei, Zhou Jun, Yin Fang, et al. Alteration Mineral Mapping and Ore Prospecting based on ASTER Data in Balikun, Xinjiang[J]. Remote Sensing Technology and Application, 2013,28(4):556-561.
7 刘磊,周军,尹芳,等.基于ASTER数据的巴里坤地区蚀变矿物填图与找矿[J].遥感技术与应用,2013,28(4):556-561.
8 Liu L, Zhou J, Jiang D, et al. Targeting Mineral Resources with Remote Sensing and Field Data in the Xiemisitai Area, West Junggar, Xinjiang, China [J]. Remote Sensing, 2013,5(7): 3156-3171.
9 Liu L, Zhou J, Yin F, et al. The Reconnaissance of Mineral Resources Through ASTER Data-based Image Processing, Interpreting and Ground Inspection in the Jiafushaersu area, West Junggar, Xinjiang (China) [J]. Journal of Earth Science, 2014, 25(2): 397-406.
10 Wei J, Liu X N, Ding C, et al. Developing a Thermal Characteristic Index for Lithology Identification Using Thermal Infrared Remote Sensing Data[J]. Advances in Space Research, 2017, 59:74-87.
11 Rajendran S, Nasir S. ASTER Capability in Mapping of Mineral Resources of arid Region: A Review on Mapping of Mineral Resources of the Sultanate of Oman[J]. Ore Geology Reviews, 2019, 108: 33-53.
12 Guha A, Kumar K V, Porwal A, et al. Reflectance Spectroscopy and ASTER based Mapping of Rock-phosphate in Parts of Paleoproterozoic Sequences of Aravalli Group of Rocks, Rajasthan, India[J]. Ore Geology Reviews, 2019, 108: 73-87.
13 Pour A B, Hashim M, Hong J K, et al. Lithological and Alteration Mineral Mapping in Poorly Exposed Lithologies Using Landsat-8 and ASTER Satellite Data: North-eastern Graham Land, Antarctic Peninsula[J]. Ore Geology Reviews, 2019, 108: 112-133.
14 Liu L, Feng J L, Rivard B, et al. Alteration Mapping Results Using Spaceborne Tiangong-1 Hyperspectral Imagery: Example from the Jintanzi Gold Province, China[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 64: 275-286.
15 Zhang Bing, Zhou Jun, Wang Junnian. Analyses of Alteration Mineral Mapping and Mineral Resources Prospecting Using TM or ETM Data[J]. Journal of Earth Sciences and Environment,2008,30(3):452-952.张兵,周军, 王军年.遥感蚀变矿物填图与找矿方法[J].地球科学与环境学报,2008,30(3):452-952.
16 Yang Hequn, Li Ying, Yang Jianguo, et al. Main Metallogenic Characteristics in the Beishan Orogen[J]. Northwestern Geology,2006,39(2):78-95.杨合群,李英,杨建国.北山造山带的基本成矿特征[J].西北地质,2006, 39(2):78-95.
17 Yang Jianguo, Wang Lei, Wang Xiaohong, et al. Zircon SHRIMP U-Pb Dating of Heishan Mafic-ultramafic Complex in the Beishan Area of Gansu Province and Its Geological Significance[J]. Geological Bulletin of China, 2012,31(2/3):448-454.杨建国,王磊,王小红,等.甘肃北山地区黑山铜镍矿化基性-超基性杂岩体SHRIMP锆石U-Pb定年及其地质意义[J].地质通报,2012,31(2/3):448-454.
18 Ren Guangli, Yang Junlu, Yang Min, et al. Application of Hyperspectral Remote Sensing Anomaly Information on Metallogenic Prediction in the Jintanzi-Mingjingou Area of Beishan, Gansu[J]. Geotectonica et Metallogenia,2013,37(4):765-776.任广利,杨军录,杨敏,等.高光谱遥感异常提取在甘肃北山金滩子-明金沟地区成矿预测中的应用[J].大地构造与成矿学,2013,37(4):765-776.
19 Boardman J W, Kruse F A, Green R O. Mapping Target Signatures Via Partial Unmixing of AVIRIS Data[C]∥ Fifth JPL Airborne Earth Science Workshop. JPL Publication, 1995:23-26.
20 Markham B L, Barker J L, Kaita E, et al. On-orbit Performance of the Landsat-7 ETM+ Radiometric Calibrators[J]. International Journal of Remote Sensing, 2003, 24(2): 265-285.
21 Liu L, Zhou J, Han L, et al. Mineral Mapping and Ore Prospecting Using Landsat TM and Hyperion Data, Wushitala, Xinjiang, Northwestern China[J].Ore Geology Reviews, 2017, 81(3): 280-295.
22 Liu L,Zhou J,Jiang D,et al.Mineral Resources Prospecting by Synthetic Application of TM/ETM+,QuickBird and Hyperion Data in the Hatu Area,West Junggar,Xinjiang,China[J].Scientific Reports, 2016,6:21851. doi:10.1038/srep21851.
doi: 10.1038/srep21851
[1] 冀新莹, 韦玉春, 王问尧, 方宏. 城镇区域高分辨率遥感影像地表覆盖变化检测的误差分析[J]. 遥感技术与应用, 2018, 33(5): 932-941.
[2] 丁哲,汪小钦,邬群勇. 遥感影像空间分辨率对城市建筑物高度估算精度的影响[J]. 遥感技术与应用, 2018, 33(3): 418-427.
[3] 卜帆,石玉立. 机载LiDAR高差和高分影像的城市树冠提取比较[J]. 遥感技术与应用, 2017, 32(5): 875-882.
[4] 王 晶,秦 翔,李振林,刘宇硕,景红霞. 2004~2015年祁连山西段大雪山地区冰川变化[J]. 遥感技术与应用, 2017, 32(3): 490-498.
[5] 蔡二丽,窦宝成,彭实,刘强,闻建光. 基于图像融合的反照率产品降尺度方法研究[J]. 遥感技术与应用, 2016, 31(4): 724-730.
[6] 程结海,柏延臣. 一种高空间分辨率遥感影像信噪比测定方法[J]. 遥感技术与应用, 2015, 30(3): 469-475.
[7] 代晶晶,王瑞江,王登红. 高空间分辨率遥感数据在离子吸附型稀土矿山调查中的应用[J]. 遥感技术与应用, 2014, 29(6): 935-942.
[8] 卓莉,黄信锐,王芳,陶海燕,郑璟. 基于高空间分辨率与立体像对遥感数据的建筑物三维信息提取[J]. 遥感技术与应用, 2013, 28(6): 1062-1068.
[9] 顾玲嘉,赵凯,孙健,郑兴明. 被动微波遥感数据超分辨率增强与混合像元分解研究综述[J]. 遥感技术与应用, 2012, 27(1): 1-6.
[10] 顾玲嘉,赵凯,孙健,郑兴明. 被动微波遥感数据超分辨率增强与混合像元分解研究综述[J]. 遥感技术与应用, 2011, 27(1): 1-7.
[11] 王祥,赵冬至,黄凤荣,杨建洪,苏岫. 基于高空间分辨率的热污染遥感监测研究进展[J]. 遥感技术与应用, 2011, 26(1): 103-110.
[12] 张俊, 于庆国, 侯家槐. 面向对象的高分辨率影像分类与信息提取[J]. 遥感技术与应用, 2010, 25(1): 112-117.
[13] 尹红刚, 张德海. 使用BG 反演算法细分重建微波辐射计图像[J]. 遥感技术与应用, 2006, 21(2): 120-124.
[14] 胡 燕,胡 莘,吕 源. 一种多幅欠采样图像的凸集投影超分辨率重建方法[J]. 遥感技术与应用, 2005, 20(3): 361-365.
[15] 董晓龙,吴 季,黄永辉. 综合孔径微波辐射计及其反演成像[J]. 遥感技术与应用, 2000, 15(2): 74-78.