Please wait a minute...
img

官方微信

遥感技术与应用  2019, Vol. 34 Issue (5): 1054-1063    DOI: 10.11873/j.issn.1004-0323.2019.5.1054
遥感应用     
COSMO-SkyMed时序影像南京城市变化检测研究
王源1,2(),陈富龙1(),胡祺3,唐攀攀1
1. 中国科学院遥感与数字地球研究所 数字地球重点实验室,北京 100094
2. 中国科学院大学,北京 100049
3. 南京市城市规划编制研究中心,江苏 南京 210029
Urban Change Detection based on COSMO-SkyMed Multi-temporal Images in Nanjing City, China
Yuan Wang1,2(),Fulong Chen1(),Qi Hu3,Panpan Tang1
1. Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. Nanjing Urban Planning Compilation and Research Center, Nanjing 210029, China
 全文: PDF(6483 KB)   HTML
摘要:

南京城市地表要素更新快且天气多云雨,光学影像无法提供实时数据;而合成孔径雷达(SAR)因其全天时、全天候工作特性,可有效弥补常规遥感数据获取瓶颈问题。以南京河西新城和江北新区为示范,选取2016~2018年13景COSMO-SkyMed数据,采用相干系数差值和强度RC合成法进行城市变化检测。针对SAR斑点噪声,分别采用同质滤波及非局部滤波法对干涉图和强度图进行降噪。两种变化检测方法的数据处理与性能评估结果表明:降噪滤波技术提升SAR城市变化图斑信息提取能力,两种方法产出查准率均为94%左右;然而目前方法仍可存在漏检,对应概率分别为66.8%和29.6 %。相较于前者,基于强度RC合成法具备对小面元、线型地物变换更佳提取能力;同时考虑到该方法对时空基线无要求,因此在实际多云多雨城市变化检测中具有更好的应用价值与推广潜力。

关键词: 城市变化检测相干信息强度信息COSMO-SkyMed    
Abstract:

Influenced by the rainy and cloudy monsoonal climate, optical remote sensing has limitations in the mapping of land use and land cover change of Nanjing City under rapid urbanization. Alternatively, Synthetic Aperture Radar (SAR) provides a feasible solution owing to the operation capacity in all-time and all-weather conditions. In this study, taking Hexi New Town and Jiangbei developing District (Nanjing) as example, we jointly applied coherent and intensity RC composition for the SAR change detection using thirteen COSMO-SkyMed images acquired in the period from 2016 to 2018. To reduce impacts from the speckle, we respectively applied Statistically Homogeneous Pixel Selection (SHPS) and Non-Local (NL) filters to coherence and intensity SAR images. The performance comparison of two aforementioned change detection approaches indicate that both of them achieved a reliable correct detection probability (up to 94%), in particular when the adaptive filters were employed. However, the difference of the omission probability from them were evident, resulting in 66.8% of the coherent compared to 29.6 % of the intensity RC composition. Generally, the intensity RC composition is more sensitive to the change of small patches and linear features. In addition, this method is not constrained by data processing and acquisitions, such as the requirements of spatiotemporal baselines. In summary, the intensity RC composition has a better performance and potential in the urban change detection, in particular for regions where rainy and cloudy climate is prevailing.

Key words: Urban change detection    Coherent    Intensity    COSMO-SkyMed
收稿日期: 2018-09-16 出版日期: 2019-12-05
ZTFLH:  TP75  
基金资助: 中国科学院A类先导专项(XDA19030502);国家重点研发计划项目(2016YFB0501502);国家自然科学基金项目(41771489)
通讯作者: 陈富龙     E-mail: wangyuan@radi.ac.cn;chenfl@radi.ac.cn
作者简介: 王 源(1993-),女,河南焦作人,硕士研究生,主要从事雷达遥感研究。Email:wangyuan@radi.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王源
陈富龙
胡祺
唐攀攀

引用本文:

王源,陈富龙,胡祺,唐攀攀. COSMO-SkyMed时序影像南京城市变化检测研究[J]. 遥感技术与应用, 2019, 34(5): 1054-1063.

Yuan Wang,Fulong Chen,Qi Hu,Panpan Tang. Urban Change Detection based on COSMO-SkyMed Multi-temporal Images in Nanjing City, China. Remote Sensing Technology and Application, 2019, 34(5): 1054-1063.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2019.5.1054        http://www.rsta.ac.cn/CN/Y2019/V34/I5/1054

图1  SAR变化检测数据处理流程图
时间对时间基线/d空间基线/m
2016-11-072016-12-09321 575.616
2016-12-092017-02-2780988.794
2017-02-272017-04-1648338.061
2017-04-162017-05-1832100.822
(2017-05-182017-06-031669.455)
2017-06-032017-07-2148350.277
2017-07-212017-08-22321 372.132
2017-08-222017-09-1928766.484
(2017-09-192017-10-0516149.721)
2017-10-052017-11-1036192.921
2017-11-102017-12-1232988.917
2017-12-122018-02-1464109.329
表1  干涉对时空基线及选取
图 2  SHPS-InSAR差分相干图滤波效果对比
图3  相干系数差值法城市变化检测
图4  SAR强度影像NL-SAR滤波前后对比
图5  图5强度RC合成法城市变化检测
图 6  相干和强度法变化小面元提取性能对比
图 7  相干和强度法变化线型地物提取性能对比
图 8  相干和强度法边界凸显效应对比
检测斑块建设状态正确错误总计
总计(个)1409149
漏检(个)59
性能评价:查全率:70.4 %,漏检率:29.6 %,查准率:94 %
表2  基于强度信息地表变化检测验证统计
检测斑块建设状态正确错误总计
总计(个)66470
漏检(个)133
性能评价:查全率:33.2%,漏检率:66.8%,查准率: 94.3%
表 3  基于相干信息地表变化检测验证统计
图9  目视解译漏检
图10  小变化图斑漏检
1 Chen Fulong,Zhang Hong,Wang Chao.The Art in SAR Change Detection:A Systematic Review[J].Remote Sensing Technology and Application,2007, 22(1): 109-115.陈富龙, 张红, 王超. SAR变化检测技术发展综述 [J]. 遥感技术与应用, 2007, 22(1): 109-115.
2 Liao M, Jiang L, Lin H, et al. Urban Change Detection based on Coherence and Intensity Characteristics of SAR Imagery [J]. Photogrammetric Engineering and Remote Sensing, 2015, 74(8): 999-1006.
3 Brenner A R, Roessing L. Radar Imaging of Urban Areas by Means of very High Resolution SAR and Interferometric SAR [J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(10): 2971-2982.
4 Ji Guangyu, Dong Yongwei, Bu Yuncheng, et al.Multi-band SAR Coherent Change Detection Method based on Coherent Representation Differences of Targets[J]. Journal of Radars, 2018, 7(4): 455-464.冀广宇, 董勇伟, 卜运成, 等. 基于目标相干性表征差异的多波段SAR相干变化检测方法 [J]. 雷达学报, 2018, 7(4): 455-464.
5 Zhang Rui, Liu Guoxiang, Li Tao, et al.Detection of Urban Land Use Changes based on High Resolution TerraSAR-X Images[J].Railway Investigation and Surveying,2011, 37(4): 17-21.张瑞, 刘国祥, 李涛, 等. 基于高分辨率TerraSAR-X影像的城市土地利用变化检测 [J]. 铁道勘察, 2011, 37(4): 17-21.
6 Cao G, Hou P, Jin Y Q, et al. Fusion of Features in Multi-temporal SAR Imagery to Detect Changes in Urban Areas [J]. International Journal of Remote Sensing, 2009, 30(22): 5989-6001.
7 Ban Y, Yousif O A. Multi-temporal Spaceborne SAR Data for Urban Change Detection in China [J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2012, 5(4): 1087-1094.
8 Doxani G, Karantzalos K, Tsakiri-strati M. Monitoring Urban Changes based on Scale-Space Filtering and Object-oriented Classification [J]. International Journal of Applied Earth Observation & Geoinformation, 2012, 15(4): 38-48.
9 Hu H, Ban Y. Unsupervised Change Detection in Multitemporal SAR Images over Large Urban Areas [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(8): 3248-3261.
10 Liu Benqiang, Zhao Zheng, Wei Jujie.A Method of SAR Image Change Detection based on Relative Entropy within Neighborhood[J]. Remote Sensing Information, 2018, 33(3): 91-97.刘本强, 赵争, 魏钜杰. 一种利用邻域相对熵的SAR影像变化检测方法 [J]. 遥感信息, 2018, 33(3): 91-97.
11 Zhang Xueru,Yao Yifeng,Kong Shaojun, et al.The Analysis On Urban Costruction Land Change and Driving Forces in Nanjing from 2000 to 2014[J].Resources and Environment in the Yangtze Basin, 2017(4): 552-562.张雪茹, 姚亦锋, 孔少君, 等. 南京市2000~2014年城市建设用地变化及驱动因子研究[J]. 长江流域资源与环境, 2017(4): 552-562.
12 Gong Maoguo,Su Linzhi,Li Hao,et al.A Suvey on Change Detection in Synthetic Aperture Radar Imagery[J].Journal of Computer Research and Development, 2016(1): 123-137.公茂果, 苏临之, 李豪, 等.合成孔径雷达影像变化检测研究进展 [J]. 计算机研究与发展, 2016(1): 123-137.
13 Jiang M, Ding X, Hanssen R F, et al. Fast Statistically Homogeneous Pixel Selection for Covariance Matrix Estimation for Multitemporal InSAR [J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 53(3): 1213-1224.
14 Jiang M, Ding X, Li Z. Hybrid Approach for Unbiased Coherence Estimation for Multitemporal InSAR [J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2459-2473.
15 Jiang M, Miao Z, Gamba P, et al. Application of Multitemporal InSAR Covariance and Information Fusion to Robust Road Extraction [J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(6): 3611-3622.
16 Jiang M, Yong B, Tian X, et al. The Potential of More Accurate Insar Covariance Matrix Estimation for Land Cover Mapping[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2017, 126:120-128.
17 Parizzi A, Brcic R. Adaptive InSAR Stack Multilooking Exploiting Amplitude Statistics: A Comparison between Different Techniques and Practical Results[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(3): 441-445.
18 Zebker H A, Villasenor J. Decorrelation in Interferometric Radar Echoes[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(5): 950-959.
19 Jiang Mi,Ding Xiaoli,He Xiufeng,et al.FaSHPS-InSAR Technique for Distributed Scatterers:A Case Study over The Lost Hills Oil Field.California[J].Chinses Journal of Geophysics,2016, 59(10): 3592-3603.蒋弥, 丁晓利, 何秀凤, 等. 基于快速分布式目标探测的时序雷达干涉测量方法:以Lost Hills油藏区为例[J]. 地球物理学报, 2016, 59(10): 3592-3603.
20 Lee J S, Pottier E. Polarimetric Radar Imaging : From Basics to Applications[M].Boca Raton,FL,USA:CRC Press,2009.
21 Papoulis, Probability A., Random Variables And Stochastic Process[M].New York City,NY,USA:McGraw-Hill, 1984.
22 Mei Anxi,Peng Wanglu, Qin Qiming, et al.Remote Sensing[M].Beijing:Higher Education Press,2001梅安新,彭望琭 秦其明,等. 遥感导论 [M].北京:高等教育出版社, 2001.
23 Deledalle C A, Denis L, Tupin F, et al. NL-SAR: A Unified Nonlocal Framework for Resolution-preserving (Pol)(In)SAR Denoising[J]. IEEE Transactions on Geoscience & Remote Sensing, 2014, 53(4): 2021-2038.
24 Su X, Deledalle C A, Tupin F, et al. Two-Step Multitemporal Nonlocal Means for Synthetic Aperture Radar Images[J]. IEEE Transactions on Geoscience & Remote Sensing, 2014, 52(10): 6181-6196.
25 Du Y, Zhang L, Feng G, et al. On the Accuracy of Topographic Residuals Retrieved by MTInSAR[J]. IEEE Transactions on Geoscience & Remote Sensing, 2017, 99: 1-13.
[1] 姜爱辉,刘国林,陈富龙. 基于PALSAR-1影像的汉函谷关遗迹变化检测研究[J]. 遥感技术与应用, 2017, 32(5): 787-793.
[2] 田 昕,陈尔学,李增元,凌飞龙,白黎娜,王琫瑜. 基于多极化星载SAR数据的水稻/旱田识别—以江苏省海安县为例 [J]. 遥感技术与应用, 2012, 27(3): 406-412.