遥感技术与应用 2019, Vol. 34 Issue (6): 1269-1275 DOI: 10.11873/j.issn.1004-0323.2019.6.1269 |
数据与图像处理 |
|
|
|
|
基于地形信息的Landsat与Radarsat-2遥感数据协同分类研究 |
刘培1,2( ),余志远1,2,4,马威3,韩瑞梅1,2( ),陈正超4,王涵1,2,杨磊库1,2 |
1.河南理工大学 矿山空间信息技术国家测绘与地理信息局重点实验室,河南 焦作 454003 2.河南理工大学 测绘与国土信息工程学院,河南 焦作 454003 3.江苏省地质测绘院 江苏 南京,210000 4.中国科学院遥感与数字地球研究所 北京 100094 |
|
Remotely Sensed Data Classification by Collaborative Processing of Landsat, Radarsat-2 and Topography Information |
Pei Liu1,2( ),Zhiyuan Yu1,2,4,Wei Ma3,Ruimei Han1,2( ),Zhengchao Chen4,Han Wang1,2,Leiku Yang1,2 |
1.Key Laboratory of State Bureau of Surveying and mapping of Mine Spatial Information Technology, Henan Poly-technic University, Jiaozuo 454003, China 2.School of Surveying and Mapping Land Information Engineering, Henan Polytechnic University, Jiaozuo 454003, China 3.Jiangsu Geologic Surveying and Mapping Institute, Nanjing 210000, China 4.Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China |
引用本文:
刘培,余志远,马威,韩瑞梅,陈正超,王涵,杨磊库. 基于地形信息的Landsat与Radarsat-2遥感数据协同分类研究[J]. 遥感技术与应用, 2019, 34(6): 1269-1275.
Pei Liu,Zhiyuan Yu,Wei Ma,Ruimei Han,Zhengchao Chen,Han Wang,Leiku Yang. Remotely Sensed Data Classification by Collaborative Processing of Landsat, Radarsat-2 and Topography Information. Remote Sensing Technology and Application, 2019, 34(6): 1269-1275.
链接本文:
http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2019.6.1269
或
http://www.rsta.ac.cn/CN/Y2019/V34/I6/1269
|
1 |
Melesse A M, Weng Q H, Thenkabail P S, et al. Remote Sensing Sensors and Applications in Environmental Resources Mapping and Modelling[J]. Sensors, 2007, 7( 12): 3209- 3241.
|
2 |
Zhu Z, Woodcock C E, Rogan J, et al. Assessment of Spectral, Polarimetric, Temporal, and Spatial Dimensions for Urban and Peri-urban Land Cover Classification Using Landsat and SAR Data[J]. Remote Sensing of Environment, 2012, 117: 72- 82.
|
3 |
Du P J, Liu P, Xia J S, et al. Remote Sensing Image Interpretation for Urban Environment Analysis: Methods, System and Examples[J]. Remote Sensing, 2014, 6( 10): 9458- 9474.
|
4 |
Liu Pei, Wang Guangyan, Zou Youfeng, et al. Research of Information Integration and Classifier Ensemble for Land Cover Types Identification [J]. Remote Sensing Information, 2016( 4): 116- 121.
|
4 |
刘培, 王光彦, 邹友峰, 等. 遥感信息融合和分类器集成的地类高精度识别[J]. 遥感信息, 2016( 4): 116- 121].
|
5 |
Mou L, Zhu X, Vakalopoulou M, et al. Multi-temporal Very High Resolution from Space: Outcome of the 2016 IEEE GRSS Data Fusion Contest[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017: 1- 13.
|
6 |
Campos Taberner M, Romero Soriano A, Gatta C, et al. Processing of Extremely High-resolution LiDAR and RGB Data: Outcome of the 2015 IEEE GRSS Data Fusion Contest–Part A: 2-D Contest[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9( 12): 5547- 5559.
|
7 |
Vo A V, Truong Hong L, Laefer D F, et al. Processing of Extremely High Resolution LiDAR and RGB Data: Outcome of the 2015 IEEE GRSS Data Fusion Contest—Part B: 3-D Contest[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9( 12): 5560- 5575.
|
8 |
Liao W Z, Huang X, Frieke Van Coillie, et al. Processing of Multiresolution Thermal Hyperspectral and Digital Color Data: Outcome of the 2014 IEEE GRSS Data Fusion Contest[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015. 8( 6): 2984- 2996.
|
9 |
Liu Lei, Zang Shuying, Na Xiaodong, et al. Wetland Mapping in the Zhalong Natural Reserve Using Optical and Radar Remotely Sensed Data and Ancillary Topographical Data[J]. Geography and Geo-Information Science, 2013, 29( 1): 36- 40.
|
9 |
刘蕾, 臧淑英, 那晓东, 等. 兼容光学雷达影像及地形辅助数据的扎龙湿地遥感分类[J]. 地理与地理信息科学, 2013, 29( 1): 36- 40.
|
10 |
Liu Pei, Du Peijun, Tan Kun. A Novel Remotely Sensed Image Classification based on Ensemble Learning and Feature Integration [J]. Journal of Infrared and Millimeter Waves, 2014, 33( 3): 311- 317.
|
10 |
刘培, 杜培军, 谭琨. 一种基于集成学习和特征融合的遥感影像分类新方法[J]. 红外与毫米波学报, 2014, 33( 3): 311- 317.
|
11 |
Ma Huijuan, Gao Xiaohong, Gu Xiaotian. Random Forest Classification of Landsat 8 Imagery for the Complex Terrain Area based on the Combination of Spectral, Topographic and Texture Information[J]. Journal of Geo-information Science, 2019, 21( 3): 359- 371.
|
11 |
马慧娟,高小红,谷晓天. 随机森林方法支持的复杂地形区土地利用/土地覆被分类研究[J]. 地球信息科学学报, 2019, 21( 3): 359- 371.
|
12 |
Xu Qiao, Zhang Xiao, Yu Shaohuai, et al. Multi-feature-based Classification Method Using Random Forest and Superpixels for Polarimetric SAR Images[J]. Journal of Remote Sensing, 2019, 23( 4): 685– 694.
|
12 |
徐乔, 张霄, 余绍淮, 等. 综合多特征的极化SAR图像随机森林分类算法[J]. 遥感学报, 2019, 23( 4): 685- 694.
|
13 |
He Yun, Huang Chong, Li He, et al. Land-cover Classification of Random Forest based on Sentinel-2A Image Feature Optimization[J]. Resources Science, 2019, 41( 5): 992- 1001.
|
13 |
何云, 黄翀, 李贺, 等. 基于Sentinel-2A影像特征优选的随机森林土地覆盖分类[J]. 资源科学, 2019, 41( 5): 992- 1001.
|
14 |
Du Yong, Research on Extraction of High-precision DEM based on InSAE Baseline Correction[D]. Beijing: Beijing Jiaotong University, 2010.
|
14 |
[杜勇,基于InSAR基线校正的高精度DEM提取研究[D]. 北京:北京交通大学, 2010.]
|
15 |
Ai Bin, Li Xia. An Analysis of Different INSAR Flattening Algorithms and Their Influence on DEM Accuracy [J]. Remote Sensing for Land and Resources, 2009, 21( 3): 12- 18.
|
15 |
艾彬,黎夏. InSAR平地相位去除算法及其对DEM精度影响研究[J]. 国土资源遥感, 2009, 21( 3): 12- 18.
|
16 |
Belgiu M, Drăguţ Lucian. Random Forest in Remote Sensing: A Review of Applications and Future Directions[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 114: 24- 31.
|
17 |
Tang Wei, Zhou Zhihua. Bagging-based Selective Clusterer Ensemble [J]. Journal of Software, 2005, 16( 4): 496- 502.
|
17 |
唐伟,周志华. 基于 Bagging 的选择性聚类集成[J]. 软件学报, 2005, 16( 4): 496- 502.
|
18 |
Xiao Rong, Wang Jicheng, Sun Zhengxing, et al. An Incremental SVM Learning Algorithm α-ISVM [J]. Journal of Software, 2001, 12( 12): 1818- 1824.
|
18 |
萧嵘, 王继成, 孙正兴, 等. 一种SVM增量学习算法α—ISVM[J]. 软件学报, 2001, 12( 12): 1818- 1824.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|