Please wait a minute...
img

官方微信

遥感技术与应用  2019, Vol. 34 Issue (6): 1315-1323    DOI: 10.11873/j.issn.1004-0323.2019.6.1315
遥感应用     
基于视差的高分辨率遥感影像建筑物变化检测
何浩1,2(),刘修国1,沈永林1
1.中国地质大学(武汉) 信息工程学院,湖北 武汉 430074
2.新疆大学 建筑工程学院,新疆 乌鲁木齐 830047
Building Change Detection Method Considering the Parallax for High Resolution Remote Sensing Image
Hao He1,2(),Xiuguo Liu1,Yonglin Shen1
1.Faculty of Information Engineering,China University of Geosciences,Wuhan 430074,China
2.Faculty of Architecture Engineering,XinJiang University,Urumqi 830047,China
 全文: PDF(4346 KB)   HTML
摘要:

针对城区高分辨率遥感影像建筑物变化检测中视差引起误检测问题,提出一种基于视差的建筑物变化检测方法。首先,利用改进的双峰分裂法实现对建筑物阴影的检测;然后,借助阴影估计屋顶的位置,并自动选取种子区域,结合区域生长法进行建筑屋顶提取;最后,以视差、视差方位角以及面积等作为判定条件对两时相影像建筑物的变化情况进行分析。通过对WorldView-2影像和IKONOS影像进行变化检测,平均正确率达到了89.6%。实验结果表明:在屋顶光谱均匀且有明显建筑阴影的稀疏建筑区,该方法能够有效解决建筑屋顶种子区域自动选取及高层建筑视差引起误检测等难点问题。

关键词: 视差高分辨率遥感建筑物变化检测    
Abstract:

Considering the problem of false detection caused by the parallax in building change detection of urban high resolution remote sensing images, a new method of building change detection is proposed. Firstly, the classical method of bimodal splitting is used to extract the shadows of buildings with small improvements, and then the seed area is selected automatically by estimating the possible roof position with the help of shadows, and the roof is extracted by the region growing method. Finally, the change of building in two-phase image is analyzed by using parallax, parallax azimuth, area, etc.. Through the change detection of WorldView-2 images and Ikonos images, the average accuracy rate reached 89.6%. Experimental results show that in sparse building areas with uniform roof spectrum and obvious building shadows, the proposed method can effectively solve the difficult problems of automatic selection of roof seed areas and false detection caused by the parallax in building change detection.

Key words: Parallax    High resolution remote sensing    Building    Change detection
收稿日期: 2018-08-22 出版日期: 2020-03-23
ZTFLH:  TP79  
基金资助: 国家自然科学基金青年科学基金项目“顾及物候的玉米作物干旱遥感监测模型研究”(41501459)
作者简介: 何 浩(1979-),男,湖南道县人,博士研究生,讲师,主要从事高分辨率遥感影像处理与应用研究。E?mail: hehao@cug.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
何浩
刘修国
沈永林

引用本文:

何浩,刘修国,沈永林. 基于视差的高分辨率遥感影像建筑物变化检测[J]. 遥感技术与应用, 2019, 34(6): 1315-1323.

Hao He,Xiuguo Liu,Yonglin Shen. Building Change Detection Method Considering the Parallax for High Resolution Remote Sensing Image. Remote Sensing Technology and Application, 2019, 34(6): 1315-1323.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2019.6.1315        http://www.rsta.ac.cn/CN/Y2019/V34/I6/1315

图1  高分影像中的几何特征三角形示例
图2  顾及投影差的建筑物变化检测流程图
图3  建筑物位置估计示意图
图4  两时相影像视差示意图
图5  实验区1高分辨率遥感影像
图6  实验区2高分辨率遥感影像
时相1 θ1(°) 时相2 θ2(°) α(°) P(像元) δ P(像元) δ α(°) δ S(像元)
15.33.8-61.057.83.35.155.87
表1  样本建筑物各项参数
图7  建筑物中心位置选取结果
图8  建筑物屋顶提取结果
图9  两时相屋顶轮廓叠加
图10  建筑物变化检测结果
P td/% P fd/% P od/%
实验区1100250
实验区2871313
总体89.616.110.3
表2  精度评价数值表
1 Xue Tengfei, Zhang Jingfa, Li Qiang. Extraction of Earthquake Damage Buildings from Multi-source Remote Sensing Data based on Corralation Change Detection and Boject-oriented Classfication Techniques[J]. Acta Seismologica Sinica, 2016, 38( 3): 496- 505.
1 薛腾飞, 张景发, 李强. 基于相关变化检测与面向对象分类技术的多源遥感图像震害信息提取[J], 地震学报, 2016( 3): 496- 505.
2 Chen Peng, Pengyuan Lü, Song Mi, et al. Change Detection Using High Spatial Resolution Remote Sensing Images for Illegal Land Use Extraction[J], Bulletin of Surveying and Mapping, 2018( 4): 108- 111.
2 陈鹏, 吕鹏远, 宋蜜, 等. 高空间分辨率遥感影像下的违法用地变化检测[J]. 测绘通报, 2018( 4): 108- 111.
3 Liu Ying, Tao Chao, Yan Pei, et al. Graph Cut Energy Driven Earthquake-damaged Building Detection from High-resolution Remote Sensing Images[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46( 7): 910- 917.
3 刘莹, 陶超, 闫培, 等. 图割能量驱动的高分辨率遥感影像震害损毁建筑物检测[J]. 测绘学报, 2017, 46( 7): 910- 917.
4 Li Chungan, Liang Wenhai. Forest Change Detection Using Remote Sensing Image based on Object-oriented Change Vector Analysis[J]. Remote Sensing for Land and Resources, 2017, 29( 3) : 77- 84.
4 李春干, 梁文海. 基于面向对象变化向量分析法的遥感影像森林变化检测[J]. 国土资源遥感, 2017, 29( 3): 77- 84.
5 Tarantino C. et al. Detection of Changes in Semi-natural Grasslands by Cross Correlation Analysis with WorldView-2 Images and New Landsat 8 Data[J]. Remote Sensing of Environment, 2016, 175: 65- 72.
6 Huang X, Zhang L, Zhu T. Building Change Detection From Multitemporal High-resolution Remotely Sensed Images based on a Morphological Building Index[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2014. 7( 1): 105 - 115.
7 Zhang Zhiqiang, Zhang Xinchang, Xin Qinchuan, et al. Combining the Pixel-based and Object-based Methods for Building Chang Detection Using High-resolution Remote Sensing Image[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47( 1): 910- 917.
7 张志强, 张新长, 辛秦川, 等, 结合像元级和目标级的高分辨率遥感影像建筑物变化检测[J]. 测绘学报, 2018, 47( 1): 102- 112.
8 Xu Anjian, Luo Junkai, Zhang Kai. A Change Detection Method for Buildings based on Structural Similarity and Line Extraction[J]. Geomatics and Spatial Information Techology, 2018, 41( 3): 163- 166, 170.
8 徐安建, 罗军凯, 张凯. 基于结构相似性与直线提取的建筑物变化检测方法[J]. 测绘与空间地理信息, 2018( 3): 163- 166, 170.
9 Chen B, Chen Z, Deng L, et al. , Building Change Detection with RGB-D Map Generated from UAV Images[J]. Neurocomputing, 2016, 208: 350- 364.
10 Zhang Yongmei, Ji Yan, Ma Li, et al. A Recognition and Change Detection Method for Buildings in Remote Sensing Images[J]. Acta Electronica Sinica, 2014( 4): 653- 657.
10 张永梅, 季艳, 马礼, 等. 遥感图像建筑物识别及变化检测方法[J]. 电子学报, 2014( 4): 653- 657.
11 Tian J, Cui S, Reinartz P. Building Change Detection Based on Satellite Stereo Imagery and Digital Surface Models[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52( 1): 406- 417.
12 Benedek C, Descombes X, Zerubia J. Building Extraction and Change Detection in Multitemporal Remotely Sensed Images with Multiple Birth and Death Dynamics[C]∥ In 2009 Workshop on Applications of Computer Vision (WACV), 2009: Snowbird, UT: IEEE, 2009.
13 Ji Shunping, Yuan Xiuxiao. A Method for Shadow Detection and Change Detection of Man-made Objects[J]. Journal of Remote Sensing, 2007, 11( 3): 323- 329.
13 季顺平, 袁修孝. 一种基于阴影检测的建筑物变化检测方法[J]. 遥感学报, 2007, 11( 3): 323- 329.
14 Zhang Jianqing, She Qiong, Pan Li. Change Detection of Residential Area by Remote Sensing Image based on LBP/C Texture[J]. Geomatics and Information Science of Wuhan University, 2008, 33( 1): 7- 11.
14 张剑清, 佘琼, 潘励. 基于LBP/C纹理的遥感影像居民地变化检测[J]. 武汉大学学报(信息科学版), 2008, 33( 1): 7- 11.
15 Tao Chao, Tan Yihua, Cai Huajie. Object-oriented Method of Hierarchical Urban Building Extract ion from High-resolution Remote-Sensing Imagery[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39( 1): 39- 45.
15 陶超, 谭毅华, 蔡华杰, 等. 面向对象的高分辨率遥感影像城区建筑物分级提取方法[J]. 测绘学报, 2010, 39( 1): 39- 45.
16 Cheng Liang, Jianya Gomg. Building Boundary Extraction Using Very High Resolut ion Images and LiDAR[J]. Acta Geodaetica et Cartographica Sinica, 2008, 37( 3): 391- 393, 399.
16 程亮, 龚健雅. LiDAR辅助下利用超高分辨率影像提取建筑物轮廓方法[J]. 测绘学报, 2008, 37( 3): 391- 393, 399.
17 Marin C, Bovolo F, Bruzzone L. Building Change Detection in Multitemporal Very High Resolution SAR Images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53( 5): 2664- 2682.
18 Tian J, Dezert J. Fusion of Multispectral Imagery and DSMs for Building Change Detection Using Belief Functions and Reliabilities[J]. International Journal of Image and Data Fusion, 2019, 10( 1): 1- 27.
19 Yuan Xiuxiao, Song Yan. A Building Change Detection Method Considering Projection Influence based on Spectral Feature and Texture Feature[J]. Geomatics and Information Science of Wuhan University, 2007, 32( 6): 489- 493.
19 袁修孝, 宋妍. 一种运用纹理和光谱特征消除投影差影响的建筑物变化检测方法[J]. 武汉大学学报(信息科学版), 2007, 32( 6): 489- 493.
20 Tang Y Q, Huang X, Zhang L P. Fault-tolerant Building Change Detection from Urban High-resolution Remote Sensing Imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10( 5): 1060- 1064.
21 Gong J, Hu X, Pang S, et al. Patch Matching and Dense CRF-based Co-Refinement for Building Change Detection from Bi-Temporal Aerial Images[J]. Sensors, 2019, 19( 7): 1557.
22 Li Weiming, Wu Yihong, Hu Zhanyi. Urban Change Detection under Large View and Illumination Variations[J]. Acta Automatica Sinica, 2009, 35( 5): 449- 461.
22 李炜明, 吴毅红, 胡占义. 视角和光照显著变化时的变化检测方法研究[J]. 自动化学报, 2009, 35( 5): 449- 461.
23 Dare P M. Shadow Analysis in High-resolution Satellite Imagery of Urban Areas[J]. Photogrammetric Engineering & Remote Sensing, 2005, 71( 2): 169- 177.
24 Yu Dongfang, Yin Jianping, Zhang Guomin. An Automatic Shadow Detection Method for Remote Sensing Images based on Gray Histogram[J]. Conputer Engineering & Science, 2008( 12): 43- 44, 93.
24 于东方, 殷建平, 张国敏. 一种基于灰度直方图的遥感影像阴影自动检测方法[J]. 计算机工程与科学, 2008( 12): 43- 44, 93.
25 Chen Zhipeng. The Study of the Differencing Change Detection Method Based on Textural Features[D]. Beijing: Graduate University of Chinese Academy of Sciences (Electronics Research Institute), 2002,
25 [陈志鹏. 基于纹理特征的差值变化检测方法研究[D]. 北京:中国科学院研究生院(电子学研究所), 2002.]
[1] 王源,陈富龙,胡祺,唐攀攀. COSMO-SkyMed时序影像南京城市变化检测研究[J]. 遥感技术与应用, 2019, 34(5): 1054-1063.
[2] 张因果,陈芸芝. 一种基于改进土地覆盖更新方法的新增建设用地自动提取[J]. 遥感技术与应用, 2019, 34(5): 1073-1081.
[3] 王宇,杨艺,王宝山,王田,卜旭辉,王传云. 深度残差神经网络高分辨率遥感图像建筑物分割[J]. 遥感技术与应用, 2019, 34(4): 736-747.
[4] 申祎,王超,胡佳乐. 一种结合空间与光谱信息的改进CVA变化检测方法[J]. 遥感技术与应用, 2019, 34(4): 799-806.
[5] 冀新莹, 韦玉春, 王问尧, 方宏. 城镇区域高分辨率遥感影像地表覆盖变化检测的误差分析[J]. 遥感技术与应用, 2018, 33(5): 932-941.
[6] 丁哲,汪小钦,邬群勇. 遥感影像空间分辨率对城市建筑物高度估算精度的影响[J]. 遥感技术与应用, 2018, 33(3): 418-427.
[7] 姜爱辉,刘国林,陈富龙. 基于PALSAR-1影像的汉函谷关遗迹变化检测研究[J]. 遥感技术与应用, 2017, 32(5): 787-793.
[8] 田峰,陈冬花,黄新利,李虎,姚国慧. 基于形态学阴影指数的高分二号影像建筑物高度估计#br#[J]. 遥感技术与应用, 2017, 32(5): 844-850.
[9] 姜萍,刘修国,陈启浩,邵芳芳. 利用多尺度SVM-CRF模型的极化SAR图像建筑物提取[J]. 遥感技术与应用, 2017, 32(3): 475-482.
[10] 张祥,陈报章,赵慧,汪磊. 基于时序Sentinel-1A数据的农田土壤水分变化检测分析[J]. 遥感技术与应用, 2017, 32(2): 338-345.
[11] 曹云刚,王志盼,杨磊. 高分辨率遥感影像道路提取方法研究进展[J]. 遥感技术与应用, 2017, 32(1): 20-26.
[12] 陈行,卓莉,陶海燕. 基于MMBI的高分辨率影像建筑物提取研究[J]. 遥感技术与应用, 2016, 31(5): 930-938.
[13] 翟玮,沈焕锋,黄春林. 结合PolSAR影像纹理特征分析提取倒塌建筑物[J]. 遥感技术与应用, 2016, 31(5): 975-982.
[14] 王俊,秦其明,叶昕,王建华,秦雪彬,杨绣丞. 高分辨率光学遥感图像建筑物提取研究进展[J]. 遥感技术与应用, 2016, 31(4): 653-662.
[15] 张明哲,张红,王超,刘萌,谢镭. 基于超像素分割和多方法融合的SAR 图像变化检测方法[J]. 遥感技术与应用, 2016, 31(3): 481-487.