Please wait a minute...
img

官方微信

遥感技术与应用  2019, Vol. 34 Issue (6): 1324-1331    DOI: 10.11873/j.issn.1004-0323.2019.6.1324
遥感应用     
基于PS-InSAR的天津地区沉降监测及分析
麻源源1,2(),左小清2(),麻卫峰3
1.武汉大学 中国南极测绘研究中心,湖北 武汉 430079
2.昆明理工大学 国土资源工程学院,云南 昆明 650093
3.云南师范大学 旅游与地理科学学院,云南 昆明 650000
Settlement Monitoring and Analysis of Tianjin Area based on PS-InSAR
Yuanyuan Ma1,2(),Xiaoqing Zou2(),Weifeng Ma3
1.Chinese Antarctic Center of Surveying and Mapping, Wuhan University, Wuhan 430079, China
2.Kunming University of Science and Engineering College of Land and Resources, Kunming 650093, China
3.School of Tourism and Geographic Sciences, Yunnan Normal University, Kunming 650500, China
 全文: PDF(4011 KB)   HTML
摘要:

城市地面沉降监测是保障城市安全建设和健康发展的重要手段之一,而传统的沉降监测方法无法大尺度反映地面形变信息。针对近几年天津地区出现大面积沉降现象,利用Sentinel-1A数据基于永久散射体干涉测量技术开展城区大范围沉降监测研究并分析了地面沉降原因。结果表明:近年来天津地区多处出现地面沉降,严重沉降区集中天津的武清区、北辰区以及郊区乡镇结合区域的王庆坨镇、胜芳镇、左各庄镇、静海镇以及大寺镇,其最大沉降漏斗位于王庆坨镇,沉降速率为-63.2 mm/a。经分析发现天津地面沉降与地下水过度开采、大型工业区的迁移和建设以及活动断裂带地质活动有关。

关键词: Sentinel-1A地面沉降永久散射体干涉测量地下水工业区活动断裂带    
Abstract:

Urban ground subsidence monitoring is one of the important means to ensure the safe construction and healthy development of the city, and the traditional settlement monitoring method can not reflect the ground deformation information on a large scale. In view of the large-scale subsidence phenomenon in Tianjin in recent years, Sentinel-1A data is used to carry out large-scale settlement monitoring research in urban areas based on the interferometry technology of permanent scattering body and analyze the causes of ground subsidence. The results show that many places in Tianjin have ground subsidence, and the severe settlement area concentrates the Wuqing District, Beichen District and the suburban township combined area of Wang Qingxuan Town, Shengfang Town, zuogezhuang town, Jinghai Town and Daji Town, the largest settlement funnel is located in Wang Qingxuan Town, the settlement rate is -63.2mm/a. The analysis shows that the ground subsidence in Tianjin is related to overexploitation of groundwater, migration and construction of large industrial areas and geological activities of active fault zones.

Key words: Sentinel-1A    Land Subsidence    PS-InSAR    Groundwater    Manufacturing District    Active fault zone
收稿日期: 2018-05-16 出版日期: 2020-03-23
ZTFLH:  TP79  
基金资助: 国家自然基金项目“滇中地区生态安全评价与预警研究”(41561048);云南省应用基础研究计划面上项目(2018FB078)
通讯作者: 左小清     E-mail: mabaofeng200888@qq.com;514012196@qq.com
作者简介: 麻源源(1990-),男,河南项城人,硕士研究生,主要从事星载InSAR的地表形变研究。E?mail: mabaofeng200888@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
麻源源
左小清
麻卫峰

引用本文:

麻源源,左小清,麻卫峰. 基于PS-InSAR的天津地区沉降监测及分析[J]. 遥感技术与应用, 2019, 34(6): 1324-1331.

Yuanyuan Ma,Xiaoqing Zou,Weifeng Ma. Settlement Monitoring and Analysis of Tianjin Area based on PS-InSAR. Remote Sensing Technology and Application, 2019, 34(6): 1324-1331.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2019.6.1324        http://www.rsta.ac.cn/CN/Y2019/V34/I6/1324

图1  研究区的地理位置
图2  时空基线分布
图3  研究区垂直沉降速率图
水准点号点水准沉降速率/(mm/a)PS-INSAR垂直向形变速率/(mm/a)差值/(mm/a)
差值中误差±0.94
1+5.0+5.4-0.4
2+9.2+8.4+0.8
3-18.0-17.2-0.8
4-6.0-5.5-0.5
5-1.8-2.2+0.4
6-8.0-7.4-0.6
7-15.9-15.0-0.9
8-4.6-5.1+0.5
9+10.2+9.4+0.8
10-22.8-24.5+1.7
11-28.4-27.0-1.4
12-1.7-1.2-0.5
13-24.9-26.2+1.3
14+2.1+1.8+0.3
15-20.5-19.6-0.9
16+7.2+6.8+0.4
17-36.9-34.8-2.1
18-8.7-9.3+0.6
表1  水准和InSAR形变结果对比
图5  胜芳镇和王庆坨镇地面沉降速率变化
图4  PS-InSAR结果与水准的相关性的比较
开采层位王庆坨镇汊沽港镇杨柳青镇双口镇总计
总计13628267197
I组00202
II组1920122
III组791996113
IV组3874049
V组以下00606
未分组00505
表2  天津地面沉降区开采井位于开采层位表
1 Zheng Xianxin, Wu Qiang, Hou Yansheng, et al. Several Frontier Problems on Urban Land Subsidence[J]. Earth Journal, 2002, 23( 3): 279- 282.
1 郑铣鑫, 武强, 侯艳声, 等. 关于城市地面沉降研究的几个前沿问题[J]. 地球学报, 2002, 23( 3): 279- 282.
2 Ma Yuanyuan, Chen Yunbo, Zou Xiaoqing, et al. Monitoring Surface Subsidence in Kunming based on Sentinel-data[J]. Surveying and Mapping Bulletin, 2018( 6): 55- 60.
2 麻源源, 陈云波, 左小清, 等. 星载InSAR技术支持下的昆明地表沉降监测[J]. 测绘通报, 2018( 6): 55- 60.
3 Zhang Ling. The Progress of Investigation and Monitoring Project of Land Subsidence InSAR in China[J]. Land and Resources Remote Sensing, 2017 ( 1): 91- 91.
3 张玲. 全国地面沉降InSAR调查与监测工程进展介绍[J]. 国土资源遥感, 2017( 1): 91- 91.
4 Duan Guangyao, Liu Huanhuan, Gong Huili, et al. Characteristics of Uneven Ground Subsidence along the Beijing-Tianjin inter-city Railway [J]. Journal of Wuhan University (Information Science Edition), 2017, 42 ( 12): 1847- 1853.
4 段光耀, 刘欢欢, 宫辉力, 等. 京津城际铁路沿线不均匀地面沉降演化特征[J]. 武汉大学学报(信息科学版), 2017, 42( 12): 1847- 1853.
5 Liu Huanhuan, Fan Jinghui, Chen Jianping, et al. Research and Practice of PSInSAR Technology based on Phase Space Correlation Analysis in Ground Subsidence Monitoring[J]. Geography and Geographic Information Science, 2012, 28 ( 3): 15- 19.
5 刘欢欢, 范景辉, 陈建平, 等. 基于相位空间相关性分析的PSInSAR技术在地面沉降监测中的研究与实践[J]. 地理与地理信息科学, 2012, 28( 3): 15- 19.
6 Zhang Youyou. Ground Subsidence Monitoring Application of Tianjin Suburb based on Sequential InSAR Technology[J]. City Survey, 2016 ( 6): 65- 69.
6 张又又. 基于时序InSAR技术的天津郊区地面沉降监测应用[J]. 城市勘测, 2016( 6): 65- 69.
7 Hu Beibei, Jiang Yanxiang, Zhou Jun, et al. The Risk Assessment and Regionalization of Ground Subsidence Disaster in Tianjin and Near Suburbs [J]. Population, Resources and Environment in China, 2008, 18 ( 4): 28- 34.
7 胡蓓蓓, 姜衍祥, 周俊, 等. 天津市区及近郊区地面沉降灾害风险评估与区划[J]. 中国人口·资源与环境, 2008, 18( 4): 28- 34.
8 Qin Hongkui, Wang Pingde. Study on the Monitoring of Ground Subsidence in Tianjin by GPS[J]. Mapping Geographic Information, 2012, 37 ( 2): 20- 21.
8 秦洪奎, 王平德. GPS用于天津市地面沉降监测的研究[J]. 测绘地理信息, 2012, 37( 2): 20- 21.
9 Li Dan, Yang Bin, Chen Cai. based on Sentinel-1A Data, the Surface Deformation of the Jiuzhaigou Earthquake[J], Remote Sensing Technology and Application, 2018, 33( 6): 1141- 1148.
9 李丹,杨斌,陈财. 基于Sentinel-1A数据反演九寨沟地震地表形变场[J]. 遥感技术与应用, 2018, 33( 6): 1141- 1148.
10 Zhang Ziwen, Yang Fan, Wu Wenhao, et al. Small Baseline Set Analysis of the Relationship between Groundwater Exploitation and Ground Subsidence[J]. Surveying and Mapping Science, 2016, 41 ( 6): 64- 69.
10 张子文, 杨帆, 吴文豪, 等. 地下水开采与地面沉降关系的短基线集分析[J]. 测绘科学, 2016, 41( 6): 64- 69.
11 Zhu Chuanguang, Zhang Yonghong, Zhang Jixian, et al. Influence of Multi-view Processing on Sequential InSAR Technology[J]. Surveying and Mapping Bulletin, 2014 ( S2): 190- 194.
11 祝传广, 张永红, 张继贤, 等. 多视处理对时序InSAR技术的影响研究[J]. 测绘通报, 2014( 增刊2): 190- 194.
12 Yi Yaoguo, Liu Huiping, Ji Jianchao, et al. Urban Land Subsidence Deformation Trend Surface Simulation based on Improved Kriging Interpolation Model[J]. Geodetic and Geodynamics, 2017, 37 ( 9): 898- 902+927.
12 伊尧国, 刘慧平, 齐建超, 等. 基于改进Kriging插值模型的城市地面沉降变形趋势面模拟[J]. 大地测量与地球动力学, 2017, 37( 9): 898- 902+927.
13 Wu Wenhao, Li Tao, Long Sichun, et al. Coregistration of Sentinel-1 TOPS Data for Interferometric Processing Using Real-time Orbit[J]. Geomatics and Information Science of Wuhan University2019, 44( 5): 745- 750.
13 吴文豪, 李陶, 龙四春, 等. 实时轨道条件下Sentinel-1卫星影像干涉配准[J]. 武汉大学学报信息科学版, 2019, 44( 5): 745- 750.
14 Peternier A, Merryman Boncori J P, Pasquali P. Near-real-time Focusing of ENVISAT ASAR Stripmap and Sentinel-1 TOPS Imagery Exploiting OpenCL GPGPU Technology[J]. Remote Sensing of Environment, 2017, 202( 1): 45- 53.
15 Hooper A, Zebker H, Segall P, et al. A New Method for Measuring Deformation on Volcanoes and Other Natural Terrains Using InSAR Persistent Scatterers[J]. Geophysical Research Letters, 2004, 31( 23): 1- 5.
16 Bai Zechao, Jin Guowang, Zhang Hongmin, et al. Sentinel-1A Radar Image PSINSAR Ground Subsidence Monitoring in Tianjin Area[J]. Journal of Surveying and Mapping Science and technology, 2017, 34 ( 3): 283- 288.
16 白泽朝, 靳国旺, 张红敏, 等. 天津地区Sentinel-1A雷达影像PSInSAR地面沉降监测[J]. 测绘科学技术学报, 2017, 34( 3): 283- 288.
17 Yagüe-Martínez N, Prats-Iraola P, González F R, et al. Interferometric Processing of Sentinel-1 TOPS Data[J]. IEEE Transactions on Geoscience & Remote Sensing, 2016, 54( 4): 2220- 2234.
18 Wu Wenhao. Study on the Interference Processing of Sentinel Radar Satellite TOPS Mode[D]. Wuhan: Wuhan University, 2016.
18 吴文豪. 哨兵雷达卫星TOPS模式干涉处理研究[D]. 武汉:武汉大学, 2016.
19 Cao Shumin, Xiao Gongwei, Xin Kai. Comparative Analysis of Ground Subsidence in Beijing Area based on PS-InSAR and SBAS-InSAR Technology[J]. Mapping and spatial Geographic information, 2016 ( 10): 40- 42.
19 曹淑敏, 肖恭伟, 辛锴. 基于PS-InSAR和SBAS-InSAR技术的北京地区地面沉降对比分析[J]. 测绘与空间地理信息, 2016( 10): 40- 42.
20 Luo Jianzhong, Liu Jinzhu, Kong Youyi, et al. Application of GPS in Tianjin Ground Subsidence Monitoring[J]. Ocean Mapping, 2017, 37 ( 3): 60- 62.
20 罗建忠, 刘金柱, 孔友谊, 等. GPS在天津市地面沉降监测中的应用[J]. 海洋测绘, 2017, 37( 3): 60- 62.
21 Zhang Yonghong, Wu Hongan, Kang Yonghui. InSAR Monitoring of the Three-stage Sround Subsidence in Beijing-Tianjin-Hebei Area in 1992-2014 Years[J]. Journal of Surveying and Mapping, 2016, 45( 9): 1050- 1058.
21 张永红, 吴宏安, 康永辉. 京津冀地区1992~2014年三阶段地面沉降InSAR监测[J]. 测绘学报, 2016, 45( 9): 1050- 1058.
22 Guo Haipeng, Bai Jinbin, Zhang Youquan, et al. Study on the Evolution Characteristics and Mechanism of Ground Subsidence in Typical Sections of North China Plain[J]. China Geology, 2017, 44 ( 6): 1115- 1127.
22 郭海朋, 白晋斌, 张有全, 等. 华北平原典型地段地面沉降演化特征与机理研究[J]. 中国地质, 2017, 44( 6): 1115- 1127.
23 Wei Jinsong, Xu Jia, Lu Yang, et al. Analysis of Ground Subsidence Funnel in Wang Qing Tuo Area,Tianjin[J]. Groundwater, 2012, 34( 5): 61- 63.
23 韦劲松, 徐佳, 陆阳, 等. 天津市王庆坨地区地面沉降漏斗分析[J]. 地下水, 2012, 34( 5): 61- 63.
24 Dong Kegang, Wang Wei, Yu Qiang, et al. Application of Soil-water Ratio Index in Groundwater Resources Management in Tianjin Subsidence Area[J]. Water Resources Protection, 2009, 25( 6): 51- 55.
24 董克刚, 王威, 于强, 等. 土水比指标在天津沉降区地下水资源管理中的应用[J]. 水资源保护, 2009, 25( 6): 51- 55.
25 Lei Kunchao, Chen Beibei, Gong Huili, et al. Tianjin Ground Subsidence Research based on PS-INSAR Technology [J]. Hydrogeological Engineering Geology, 2013, 40( 6): 106- 111.
25 雷坤超, 陈蓓蓓, 宫辉力, 等. 基于PS-InSAR技术的天津地面沉降研究[J]. 水文地质工程地质, 2013, 40( 6): 106- 111.
[1] 黄静,王芳,张运. 基于PSI技术的芜湖市地面沉降时空特征分析[J]. 遥感技术与应用, 2019, 34(4): 829-838.
[2] 冯贵平,宋清涛,蒋兴伟. 卫星重力监测全球地下水储量变化及其特征[J]. 遥感技术与应用, 2019, 34(4): 822-828.
[3] 李丹, 杨斌, 陈财. 基于Sentinel-1A数据反演九寨沟地震地表形变场[J]. 遥感技术与应用, 2018, 33(6): 1141-1148.
[4] 郭欣,赵银娣. 基于Sentinel-1A SAR的湖南省宁乡市洪水监测[J]. 遥感技术与应用, 2018, 33(4): 646-656.
[5] 王琳,徐涵秋,李胜. 重钢重工业区迁移对区域生态的影响研究[J]. 遥感技术与应用, 2018, 33(3): 387-397.
[6] 林辉,柯长青. COSMOGSkyMed数据在常州市地表形变监测中的应用[J]. 遥感技术与应用, 2016, 31(3): 599-606.
[7] 雷坤超,贾三满,陈蓓蓓,罗勇,韩征. 基于PS-InSAR技术的廊坊市地面沉降监测研究[J]. 遥感技术与应用, 2013, 28(6): 1114-1119.
[8] 戴长雷, 迟宝明, 林岚, 施枫芝. 基于GIS的地下水监测管理信息系统(GMSMIS)分析与设计[J]. 遥感技术与应用, 2005, 20(6): 625-629.
[9] 傅碧宏, 史基安, 张中宁 . Landsat TM热红外遥感数据定量反演地下水富集带的温度信息——以甘肃河西地区石羊河流域为例[J]. 遥感技术与应用, 1999, 14(2): 39-43.
[10] 陈秀万, 杨积成,魏文秋. 陆地卫星遥感信息在区域地下水资源量计算中的应用[J]. 遥感技术与应用, 1991, 6(3): 24-30.
[11] 张林泉,姜文明. 遥感信息复合技术在黄水河地下水库证论中的应用[J]. 遥感技术与应用, 1991, 6(2): 37-43.