Please wait a minute...
img

官方微信

遥感技术与应用  2020, Vol. 35 Issue (1): 58-64    DOI: 10.11873/j.issn.1004-0323.2020.1.0058
土壤水分专栏     
SMOS与SMAP过境时段表层土壤水分的稳定性研究
陈勇强1(),杨娜1(),胡新1,佟明远2
1. 河南理工大学 测绘与国土信息工程学院 河南 焦作 454000
2. 东北电力大学 自动化工程学院 吉林 吉林 132012
Study on Stability of Surface Soil Moisture during SMOS and SMAP Transit period
Yongqiang Chen1(),Na Yang1(),Xin Hu1,Mingyuan Tong2
1. School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China
2. School of Automation Engineering, Northeast Electric Power University, Jilin 132012, China
 全文: PDF(5520 KB)   HTML
摘要:

SMOS和SMAP都是为获取全球土壤水分信息而设计的专题卫星,均搭载了L波段辐射计。进行二者的横向对比是构建具有一致性的全球土壤水分数据集的关键基础。虽然SMAP、SMOS名义上的过境时刻是固定的,但二者的实际过境时刻随时间和空间发生变化,它们与地面实测数据三者之间难以匹配形成时序上严格统一的样本对,从而给土壤水分反演结果的精度评定带来困难。针对这一问题,以美国大陆地区为研究区,首先对2016~2017年SMOS、SMAP土壤水分数据的时间戳进行统计,判定二者过境的交叠时段;进而利用高观测频率、大空间尺度的实测数据,研究表层土壤水分在此时段内的自然变化特征。结果显示,按照全部、无降水、有降水3种条件,在样本量分别为98.14%、99.51%和88.49%的绝大多数情况下,表层土壤水分的变化量为0.007 m3/m3、0.007 m3/m3和0.012 m3/m3, 远小于SMOS、SMAP的目标精度(0.04 m3/m3)。初步证实: ①SMOS与SMAP的土壤水分反演结果(L2数据)可进行直接比对;②过境时刻差异对验证误差的影响可不计。

关键词: SMOSSMAP微波遥感表层土壤水分土壤水分稳定性    
Abstract:

SMOS and SMAP are both dedicated to acquire global soil moisture information with L band radiometer. The parallel comparison between them is the key foundation for the integration of a consistent global soil moisture dataset. Though the nominal passing time of SMAP and SMOS are designed fixed, the precise time they move overhead locally may not be the same because of the variation in spatial and temporal, practically it is unable to match SMAP, SMOS and field observations in temporal rigidly, therefore the evaluation on their soil moisture retrievals is hard to carry. Research on this mismatch problem is made in the continental United States; firstly, the overlapping period of the two satellites is determined on the basis of a statistic on the time stamp of 2016~2017 SMOS and SMAP soil moisture data; then, the natural variation characteristics of surface soil moisture within this period is studied using in-situ data which having high density in temporal and large scale in spatial. Results showed that, by grouping the samples in the three conditions of entire, no precipitation and with precipitation, where the sample ratio of 98.14%, 99.51% and 88.49% in each group, respectively, meaning in most cases, the surface soil moisture presents a variation of 0.007 m3/m3, 0.007 m3/m3 and 0.012 m3/m3accordingly, which is far less than the nominal accuracy of SMOS and SMAP (0.04 m3/m3). It can be demonstrated preliminarily, ① the direct comparison of SMOS and SMAP soil moisture retrievals (L2 data) is acceptable, ② validation error induced by the difference of passing time can be neglected.

Key words: SMOS    SMAP    Microwave remote sensing    Surface soil moisture    Soil moisture stability
收稿日期: 2018-10-25 出版日期: 2020-04-01
ZTFLH:  TP79  
基金资助: 国家自然科学基金青年基金项目“非均质平原农区SMOS土壤水分反演算法优化研究”(41501363);河南省科技攻关计划(农业领域)项目“SMOS/SMAP农区土壤水分精准反演及点-面时空尺度匹配研究”(172102110033)
通讯作者: 杨娜     E-mail: yongqiang5566@foxmail.com;yangna800522@foxmail.com
作者简介: 陈勇强(1992-),男,河南三门峡人,硕士研究生,主要从事微波土壤水分反演与应用研究。E?mail:yongqiang5566@foxmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈勇强
杨娜
胡新
佟明远

引用本文:

陈勇强,杨娜,胡新,佟明远. SMOS与SMAP过境时段表层土壤水分的稳定性研究[J]. 遥感技术与应用, 2020, 35(1): 58-64.

Yongqiang Chen,Na Yang,Xin Hu,Mingyuan Tong. Study on Stability of Surface Soil Moisture during SMOS and SMAP Transit period. Remote Sensing Technology and Application, 2020, 35(1): 58-64.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2020.1.0058        http://www.rsta.ac.cn/CN/Y2020/V35/I1/58

图1  美国大陆单景SMOS、SMAP L2土壤水分产品(2017年8月2日)
图2  美国大陆地区USCRN亚小时级实测站点
图3  SMOS、 SMAP过境时刻统计(2016~2017年,UTC时间)
图4  SMOS与SMAP过境交叠时段(UTC时间)
图5  SMOS、SMAP过境交叠时段实测土壤水分变化量
图6  SMOS、SMAP过境交叠时段升、降轨实测土壤水分变化量差异
图7  降水与土壤水分变化量
图8  土壤水分变化量总体分布
1 Zuo Z , Zhang R .Influence of Soil Moisture in Eastern China on the East Asian Summer Monsoon[J].Advances in Atmospheric Sciences,2016,33(2):151-163.
2 Winkler D E , Chapin K J , Kueppers L M .Soil Moisture Mediates Alpine Life form and Dommunity Productivity Responses to Warming[J].Ecology,2016,97(6):1555-1565.
3 Zhao Tianjie .Recent Advances of L-band Applicationin the Passive Microwave Remote Sensing of Soil Moisture and Its Prospects[J].Progress in Geography,2018,37(2):198-213.赵天杰.被动微波反演土壤水分的L波段新发展及未来展望[J].地理科学进展,2018,37(2):198-213.
4 Kerr Y H , Waldteufel P , Wigneron J P ,et al .The SMOS Mission: New Tool for Monitoring Key Elements of the Global Water Cycle[J].Proceedings of the IEEE,2010,98(5):666-687.
5 Entekhabi D , Njoku E G , O'Neill P E ,et al .The Soil Moisture Active Passive (SMAP) Mission[J].Proceedings of the IEEE,2010,98(5):704-716.
6 Cui C , Xu J , Zeng J ,et al .Soil Moisture Mapping from Satellites: An Intercomparison of SMAP, SMOS, FY3B, AMSR2, and ESA CCI over Two Dense Network Regions at Different Spatial Scales[J].Remote Sensing,2017,10(1):33.doi:10.3390/rs10010033 .
doi: 10.3390/rs10010033
7 Chen F , Crow W T , Bindlish R ,et al .Global-scale Evaluation of SMAP, SMOS and ASCAT Soil Moisture Products Using Triple Collocation[J].Remote Sensing of Environment,2018,214:1-13.
8 Burgin M S , Colliander A , Njoku E G ,et al .A Comparative Study of the SMAP Passive Soil Moisture Product with Existing Satellite-based Soil Moisture Products[J].IEEE Transactions on Geoscience & Remote Sensing,2017,55(5):2959-2971.
9 Bai Yu , Meng Zhiguo , Zhao Kai ,et al .Pixel-scale Soil Moisture Monitoring Network an Its Preliminary Validation of L-band Soil Moisture Products[J].Remote Sensing Technology and Application,2018,33(1):78-87.
9 白瑜,孟治国,赵恺,等 .像元尺度土壤水分监测网络及其对L波段土壤水分产品的初步验证结果[J].遥感技术与应用,2018,33(1):78-87.
10 Al-Yaari A , Wigneron J P , Kerr Y ,et al .Evaluating Soil Moisture Retrievals from ESA's SMOS and NASA's SMAP Brightness Temperature Datasets[J].Remote Sensing of Environment,2017,193:257-273.
11 Djamai N , Magagi R , Goïta K ,et al .Evaluation of SMOS Soil Moisture Products over the CanEx-SM10 Area[J].Journal of Hydrology,2015,520(4):254-267.
12 Kerr Y H , Waldteufel P , Wigneron J P ,et al .Soil Moisture Retrieval from Space: the Soil Moisture and Ocean Salinity (SMOS) Mission[J].IEEE Transactions on Geoscience& Remote Sensing,2002,39(8):1729-1735.
13 Sanchez N , Martínez-Fernández J , Scaini A ,et al .Validation of the SMOS L2 Soil Moisture Data in the REMEDHUS Network (Spain)[J].IEEE Transactions on Geoscience and Remote Sensing,2012,50(5):1602-1611.
14 Petitcolin F , Vergely J L , Waldteufel P ,et al .Soil Moisture Retrieval for the SMOS Mission[C]∥EGS - AGU - EUG Joint Assembly,2003:911-913.
15 Entekhabi D , Njoku E G , O'Neill P E ,et al .The Soil Moisture Active Passive (SMAP) Mission[J].Proceedings of the IEEE,2010,98(5):704-716.
16 Panciera R , Walker J P , Jackson T J ,et al .The Soil Moisture Active Passive Experiments (SMAPEx): Towards Soil Moisture Retrieval from the SMAP Mission[J].IEEE Transactions on Geoscience and Remote Sensing,2013,52(1):490-507.
17 Dong J , Crow W T , Bindlish R .The Error Structure of the SMAP Single and Dual Channel Soil Moisture Retrievals[J].Geophysical Research Letters,2018,45(2):758-765.
18 Bell J E , Palecki M A , Baker C B ,et al .US Climate Reference Network Soil Moisture and Temperature Observations[J].Journal of Hydrometeorology,2013,14(3):977-988.
19 Rodríguez-Fernández N J , Muñoz Sabater J , Richaume P ,et al .SMOS Near-real-time Soil Moisture Product: Processoroverview and First Validation Results[J].Hydrology and Earth System Sciences,2017,21(10):1-23.
20 Brodzik M , Billingsley B , Haran T M ,et al. 2.Enabling Ease of Access for Earth-gridded Data with EASE-Grid 0[C]∥American Geophysical Union,2013.
[1] 李雷,郑兴明,赵凯,李晓峰,王广蕊. 基于CCI土壤水分产品的干旱指数精度评价及其对东北地区粮食产量的影响[J]. 遥感技术与应用, 2020, 35(1): 111-119.
[2] 陈家利,郑东海,庞国锦,李新. 基于SMAP亮温数据反演青藏高原玛曲区域土壤未冻水[J]. 遥感技术与应用, 2020, 35(1): 48-57.
[3] 劳从坤,杨娜,徐少博,汤燕杰,张恒杰. 反演策略对SMOS土壤水分反演算法的影响研究[J]. 遥感技术与应用, 2020, 35(1): 65-73.
[4] 范悦,邱建秀,董建志,张小虎,王大刚. 基于Triple Collocation方法的微波土壤水分产品不确定性分析与时空变化规律研究[J]. 遥感技术与应用, 2020, 35(1): 85-96.
[5] 王树果,刘伟,梁亮. 基于Triple-Collocation方法的微波遥感土壤水分产品不确定性分析及数据融合[J]. 遥感技术与应用, 2019, 34(6): 1227-1234.
[6] 高玥,徐慧,刘国. GSMaP遥感降水产品对典型极端降水事件监测能力评估[J]. 遥感技术与应用, 2019, 34(5): 1121-1132.
[7] 李瑞娟, 李兆富, 郝睿, 张舒昱, 潘剑君. 亚洲区域AMSR2与SMOS土壤水分产品对比研究[J]. 遥感技术与应用, 2019, 34(1): 125-134.
[8] 梅源, 王晶, 孙丽娜, 张旭东, 孟俊敏. 基于非线性薛定谔方程的高分三号图像内波参数反演[J]. 遥感技术与应用, 2018, 33(5): 915-922.
[9] 王宝刚,晋锐,赵泽斌,亢健. 被动微波遥感在地表冻融监测中的应用研究进展[J]. 遥感技术与应用, 2018, 33(2): 193-201.
[10] 白瑜,孟治国,赵凯. 像元尺度土壤水分监测网络及其对L波段土壤水分产品的初步验证结果[J]. 遥感技术与应用, 2018, 33(1): 78-87.
[11] 魏龙,王维真,吴月茹,马春锋. 土壤水盐介电模型对比与分析[J]. 遥感技术与应用, 2017, 32(6): 1022-1030.
[12] 向怡衡,张明敏,张兰慧,贺缠生,王一博,白晓. 祁连山区不同植被类型上的SMOS遥感土壤水分产品质量评估[J]. 遥感技术与应用, 2017, 32(5): 835-843.
[13] 张焱,李新武,梁雷. 基于微波散射计的格陵兰冰盖冻融探测方法研究[J]. 遥感技术与应用, 2017, 32(1): 113-120.
[14] 邱玉宝,郭华东,石利娟,施建成. 基于AMSR-E的全球陆表被动微波发射率数据集[J]. 遥感技术与应用, 2016, 31(4): 809-819.
[15] 晋锐. 中国长时间序列地表冻融状态数据集[J]. 遥感技术与应用, 2016, 31(4): 820-826.