Please wait a minute...
img

官方微信

遥感技术与应用  2020, Vol. 35 Issue (1): 85-96    DOI: 10.11873/j.issn.1004-0323.2020.1.0085
土壤水分专栏     
基于Triple Collocation方法的微波土壤水分产品不确定性分析与时空变化规律研究
范悦1,2,3(),邱建秀1,2,3(),董建志4,张小虎5,王大刚1,2,3
1.中山大学地理科学与规划学院 广东省城市化与地理环境空间模拟重点实验室,广东 广州 510275
2.广东省地质过程与矿产资源探查重点实验室,广东 广州 510275
3.南方海洋科学与工程广东省实验室(珠海),广东 珠海 519000
4.美国农业部 水文遥感实验室,马里兰州 20705
5.南京农业大学国家信息农业工程技术中心 南京农业大学, 江苏 南京 210095
Error Characteristics of Microwave Soil Moisture Products based on Triple Collocation and Its Spatial-temporal Pattern
Yue Fan1,2,3(),Jianxiu Qiu1,2,3(),Jianzhi Dong4,Xiaohu Zhang5,Dagang Wang1,2,3
1.Guangdong Provincial Key Laboratory of Urbanization and Geo-simulation, School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China
2.Key Laboratory of Mineral Resource & Geological Processes of Guangdong Province, Guangzhou 510275, China
3.Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
4.USDA-ARS Hydrology and Remote Sensing Laboratory, Beltsville, MD20705-2350 USA
5.National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China
 全文: PDF(7209 KB)   HTML
摘要:

土壤水分是连接地—气系统的重要状态变量,微波遥感为准确获取大面积土壤水分信息提供新的技术手段。准确解读微波土壤水分产品质量、深入了解其误差的时空分布特征是通过数据同化等方法将其融入陆面模型,从而成功应用于地球科学领域的重要先决条件。基于Triple Collocation(TC)方法检验了风云三号C星(FY-3C)、土壤水分主被动卫星(SMAP)及高级微波散射计(ASCAT)这3种常用微波土壤水分产品在中国陆域的质量,并通过Hovm?ller图评估了3套产品捕捉土壤水分时空变化的能力。结果显示:①TC方法得到的分析结论与地面实测资料的验证结果一致,整体上SMAP优于ASCAT和FY-3C,不同土地利用类型下SMAP信噪比均最高,三者的TC信噪比分别为1.668 dB、-0.316 dB和-2.182 dB,同时三者与实测值的相关系数分别为0.514、0.501和0.209;②FY-3C和ASCAT产品的精度在中国西北地区整体优于南部地区,3种产品均能较好地刻画土壤水分随纬度和经度变化的情况,3种产品展现的季节波动整体高于实测,其中FY-3C的季节波动在3种产品中最为剧烈;③FY-3C的质量比ASCAT和SMAP更易受到植被影响,但在裸土区FY-3C优于ASCAT。本研究基于TC分析提供了全国范围内3种主流微波土壤水分产品的误差和信噪比的空间分布,并通过Hovm?ller图评估了其描述土壤水分时空变化的能力。研究结论可为微波土壤水分产品的同化研究提供一定参考。

关键词: 风云三号SMAPASCATTriple Collocation土壤水分    
Abstract:

Soil moisture is an important state variable connecting the land surface-atmosphere system, and its information can be efficiently acquired by the new technique of microwave remote sensing. Accurate interpretation of the microwave soil moisture products qualities and in-depth understanding of their temporal and spatial distributions are important prerequisites for their successful application in earth science through data assimilation. In this study, three microwave soil moisture products, FengYun-3C(FY-3C), Soil Moisture Active Passive (SMAP) and Advanced Scatterometer(ASCAT), were evaluated over China based on the triple collocation (TC) method. The abilities of three products to obtain temporal and spatial variations of soil moisture were illustrated by Hovm?ller diagram. The results show that: (1) SMAP generally outperforms ASCAT and FY-3C, with highest TC-based signal-to-noise ratio(SNR) under different land use types. The TC-based SNRs are 1.668dB, -0.316dB and -2.182dB for SMAP, ASCAT and FY-3C respectively; and their correlation coefficients with ground observations are 0.514, 0.501 and 0.209, respectively. (2) The accuracies of FY-3C and ASCAT in Northwest China are overall higher than those in the southern China. All three products can capture the latitudinal and longitudinal gradients of soil moisture, whereas their seasonal fluctuations are higher than those of in-situ measurements. Among three products, FY-3C shows highest spatial gradient and strongest seasonal fluctuations. (3) FY-3C product performance is more susceptible to vegetation coverage than ASCAT and SMAP, but it outperforms ASCAT in barren areas. The results of our study could provide useful insights for assimilating microwave soil moisture products into land surface models to improve hydrological prediction.

Key words: FengYun 3C    SMAP    ASCAT    Triple Collocation    Soil moisture
收稿日期: 2019-12-20 出版日期: 2020-04-01
ZTFLH:  TP75  
基金资助: 国家自然科学基金面上项目(41971031);国家自然科学基金青年项目(41501450)
通讯作者: 邱建秀     E-mail: fany26@mail2.sysu.edu.cn;qiujianxiu@mail.sysu.edu.cn
作者简介: 范 悦(1994-),女,重庆开州人,硕士研究生,主要从事遥感土壤水分产品验证研究。E?mail:fany26@mail2.sysu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
范悦
邱建秀
董建志
张小虎
王大刚

引用本文:

范悦,邱建秀,董建志,张小虎,王大刚. 基于Triple Collocation方法的微波土壤水分产品不确定性分析与时空变化规律研究[J]. 遥感技术与应用, 2020, 35(1): 85-96.

Yue Fan,Jianxiu Qiu,Jianzhi Dong,Xiaohu Zhang,Dagang Wang. Error Characteristics of Microwave Soil Moisture Products based on Triple Collocation and Its Spatial-temporal Pattern. Remote Sensing Technology and Application, 2020, 35(1): 85-96.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2020.1.0085        http://www.rsta.ac.cn/CN/Y2020/V35/I1/85

图1  全国实测站点分布图
图2  基于地面实测的验证结果(只保留相关系数通过0.05显著性水平检验的站点)
图3  2017年生长季期间不同下垫面类型的地面实测时序与微波土壤水分时序对比
图4  基于SMAP和基于FY-3C的TC结果散点图,颜色代表数据点的核密度估计结果
图5  3种微波产品的信噪比空间分布图
图6  3种微波产品的误差值空间分布图
图7  不同土地利用类型下各微波土壤水分产品的信噪比
图8  土壤水分序列季节—纬向分布
图9  土壤水分序列季节-经向分布
图10  不同等级植被覆盖度下各微波产品的信噪比
1 Falloon P,Jones C D,Ades M,et al.Direct Soil Moisture Controls of Future Global Soil Carbon Changes: An Important Source of Uncertainty[J].Global Biogeochemical Cycles.2011,25(3):1-14.
2 Pauwels V R N,Hoeben R,Verhoest N E C,et al.The Importance of the Spatial Patterns of Remotely Sensed Soil Moisture in the Improvement of Discharge Predictions for Small-Scale Basins Through Data Assimilation[J].Journal of Hydrology,2001,251(1):88-102.
3 Zhang X,Qiu J,Leng G,et al.The Potential Utility of Satellite Soil Moisture Retrievals for Detecting Irrigation Patterns in China[J].Water,2018,10(11):1505.doi:10.3390/w10111505.
doi: 10.3390/w10111505
4 Kumar S V,Peters-Lidard C D,Santanello J A,et al.Evaluating the Utility of Satellite Soil Moisture Retrievals over Irrigated Areas and the Ability of Land Data Assimilation Methods to Correct for Unmodeled Processes[J].Hydrology and Earth System Sciences,2015,19(11):4463-4478.
5 Brocca L,Tarpanelli A,Filippucci P,et al.How Much Water is Used for Irrigation? A New Approach Exploiting Coarse Resolution Satellite Soil Moisture Products[J].International Journal of Applied Earth Observation and Geoinformation,2018,73:752-766.
6 Jackson T J,Cosh M H,Bindlish R,et al.Validation of Advanced Microwave Scanning Radiometer Soil Moisture Products[J].IEEE Transactions on Geoscience and Remote Sensing,2010,48(12):4256-4272.
7 Kachi M,Naoki K,Hori M,et al.AMSR2 Validation Results[C]∥IEEE International Geoscience and Remote Sensing Symposium (IGARSS).Piscataway, NJ:IEEE,2013:831-834.
8 Kerr Y H,Waldteufel P,Wigneron J P,et al.Soil Moisture Retrieval from Space: The Soil Moisture and Ocean Salinity (SMOS) Mission[J].IEEE Transactions on Geoscience and Remote Sensing,2001,39(8):1729-1735.
9 Fernandez-Moran R,Al-Yaari A,Mialon A,et al.SMOS-IC: An Alternative SMOS Soil Moisture and Vegetation Optical Depth Product[J].Remote Sensing,2017,9(5):457.doi:10.3390/rs9050457.
doi: 10.3390/rs9050457
10 Fernandez-Moran R,Wigneron J P,De Lannoy G,et al.A New Calibration of the Effective Scattering Albedo and Soil Roughness Parameters in the SMOS SM Retrieval Algorithm[J].International Journal of Applied Earth Observation and Geoinformation,2017,62:27-38.
11 Entekhabi D,Njoku E G,O'Neill P E,et al.The Soil Moisture Active Passive (SMAP) Mission[J].Proceedings of the IEEE,2010,98(5):704-716.
12 Bindlish R,Jackson T,Cosh M,et al.Global Soil Moisture from the Aquarius/SAC-D Satellite: Description and Initial Assessment[J].IEEE Geoscience and Remote Sensing Letters,2015,12(5):923-927.
13 Wagner W,Hahn S,Kidd R,et al.The ASCAT Soil Moisture Product: A Review of its Specifications, Validation Results, and Emerging Applications[J].Meteorologische Zeitschrift,2013,22(1):5-33.
14 Liu Y Y,Parinussa R M,Dorigo W A,et al.Developing an Improved Soil Moisture Dataset by Blending Passive and Active Microwave Satellite-based Retrievals[J].Hydrology and Earth System Sciences,2011,15(2):425-436.
15 Dorigo W A,Scipal K,Parinussa R M,et al.Error Characterisation of Global Active and Passive Microwave Soil Moisture Data Sets[J].Hydrology and Earth System Sciences Discussions,2010,7(4):5621-5645.
16 Stoffelen A.Toward the True Near‐Surface Wind Speed: Error Modeling and Calibration Using Triple Collocation[J].Journal of Geophysical Research: Oceans,1998,103(C4):7755-7766.
17 Crow W T,Bindlish R,Jackson T J.The Added Value of Spa-ceborne Passive Microwave Soil Moisture Retrievals for Forecasting Rainfall-runoff Partitioning[J].Geophysical Research Letters,2005,32(18).doi:10.1029/2005GL 023543.
doi: 10.1029/2005GL 023543
18 Hain C R,Crow W T,Mecikalski J R,et al.An Intercomparison of Available Soil Moisture Estimates from Thermal Infrared and Passive Microwave Remote Sensing and Land Surface Modeling[J].Journal of Geophysical Research,2011,116(D15).doi:10.1029/2011JD015633.
doi: 10.1029/2011JD015633
19 Hain C R,Crow W T,Anderson M C,et al.An Ensemble Kalman Filter Dual Assimilation of Thermal Infrared and Microwave Satellite Observations of Soil Moisture into the Noah Land Surface Model[J].Water Resources Research,2012,48(11):W11517.
20 Crow W T,Kumar S V,Bolten J D.On the Utility of Land Surface Models for Agricultural Drought Monitoring[J].Hydrology and Earth System Sciences,2012,16(9):3451-3460.
21 Miralles D G,Crow W T,Cosh M H.Estimating Spatial Sampling Errors in Coarse-scale Soil Moisture Estimates Derived from Point-Scale Observations[J].Journal of Hydrometeorology,2010,11(6):1423-1429.
22 El Hajj M,Baghdadi N,Zribi M,et al.Evaluation of SMOS, SMAP, ASCAT and Sentinel-1 Soil Moisture Products at Sites in Southwestern France[J].Remote Sensing,2018,10(4):569.doi:10.3390/rs10040569.
doi: 10.3390/rs10040569
23 Al-Yaari A,Dayau S,Chipeaux C,et al.The AQUI Soil Moisture Network for Satellite Microwave Remote Sensing Validation in South-Western France[J].Remote Sensing,2018,10(11):1839.doi:10.3390/rs10111839.
doi: 10.3390/rs10111839
24 Miyaoka K,Gruber A,Ticconi F,et al.Triple Collocation Analysis of Soil Moisture from Metop-A ASCAT and SMOS Against JRA-55 and ERA-Interim[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2017,10(5):2274-2284.
25 Chen F,Crow W T,Bindlish R,et al.Global-Scale Evaluation of SMAP, SMOS and ASCAT Soil Moisture Products Using Triple Collocation[J].Remote Sensing of Environment,2018,214:1-13.
26 Chan S K,Bindlish R,O'Neill P E,et al.Assessment of the SMAP Passive Soil Moisture Product[J].IEEE Transactions on Geoscience and Remote Sensing,2016,54(8):4994-5007.
27 Draper C S,Walker J P,Steinle P J,et al.An Evaluation of AMSR–E Derived Soil Moisture over Australia[J].Remote Sensing of Environment,2009,113(4):703-710.
28 Zhu Y,Li X,Pearson S,et al.Evaluation of Fengyun-3C Soil Moisture Products Using In-Situ Data from the Chinese Automatic Soil Moisture Observation Stations: A Case Study in Henan Province, China[J].Water,2019,11(2):248.
29 Shi J,Jiang L,Zhang L,et al.Physically based Estimation of Bare-Surface Soil Moisture with the Passive Radiometers[J].IEEE Transactions on Geoscience and Remote Sensing,2006,44(11):3145-3153.
30 Wagner W,Lemoine G,Rott H.A Method for Estimating Soil Moisture from ERS Scatterometer and Soil Data[J].Remote Sensing of Environment,1999,70(2):191-207.
31 Liu Y Y,Dorigo W A,Parinussa R M,et al.Trend-Preserving Blending of Passive and Active Microwave Soil Moisture Retrievals[J].Remote Sensing of Environment,2012,123:280-297.
32 Reichle R H,Draper C S,Liu Q,et al.Assessment of MERRA-2 Land Surface Hydrology Estimates[J],Journal of Climate,2017,30(8):2937-2960.
33 Gruber A,Su C H,Zwieback S,et al.Recent Advances in (Soil Moisture) Triple Collocation Analysis[J].International Journal of Applied Earth Observation and Geoinformation,2016,45:200-211.
34 Mccoll K A,Vogelzang J,Konings A G,et al.Extended Triple Collocation: Estimating Errors and Correlation Coefficients with Respect to an Unknown Target[J].Geophysical Research Letters,2014,41(17):6229-6236.
35 Hovmöller E.The Trough-and-Ridge Diagram[J].Tellus,1949,1(2):62-66.
36 Al-Yaari A,Wigneron J P,Dorigo W,et al.Assessment and Inter-Comparison of Recently Developed/Reprocessed Microwave Satellite Soil Moisture Products Using ISMN Ground-Based Measurements[J].Remote Sensing of Environment,2019,224:289-303.
[1] 王树果, 马春锋, 赵泽斌, 魏龙. 基于Sentinel-1及Landsat 8数据的黑河中游农田土壤水分估算[J]. 遥感技术与应用, 2020, 35(1): 13-22.
[2] 李雷,郑兴明,赵凯,李晓峰,王广蕊. 基于CCI土壤水分产品的干旱指数精度评价及其对东北地区粮食产量的影响[J]. 遥感技术与应用, 2020, 35(1): 111-119.
[3] 罗家顺,邱建秀,赵天杰,王大刚. 基于Sentinel-1数据的黑河中游土壤水分反演[J]. 遥感技术与应用, 2020, 35(1): 23-32.
[4] 陈家利,郑东海,庞国锦,李新. 基于SMAP亮温数据反演青藏高原玛曲区域土壤未冻水[J]. 遥感技术与应用, 2020, 35(1): 48-57.
[5] 陆峥,韩孟磊,卢麾,彭雪婷,蒙莎莎,刘进,杨晓帆. 基于AMSR2多频亮温的黑河流域中上游土壤水分估算研究[J]. 遥感技术与应用, 2020, 35(1): 33-47.
[6] 胡路,赵天杰,施建成,李尚楠,樊东,王平凯,耿德源,肖青,崔倩,陈德清. 基于地基微波辐射观测的土壤水分反演算法评估[J]. 遥感技术与应用, 2020, 35(1): 74-84.
[7] 陈勇强,杨娜,胡新,佟明远. SMOS与SMAP过境时段表层土壤水分的稳定性研究[J]. 遥感技术与应用, 2020, 35(1): 58-64.
[8] 劳从坤,杨娜,徐少博,汤燕杰,张恒杰. 反演策略对SMOS土壤水分反演算法的影响研究[J]. 遥感技术与应用, 2020, 35(1): 65-73.
[9] 王树果,刘伟,梁亮. 基于Triple-Collocation方法的微波遥感土壤水分产品不确定性分析及数据融合[J]. 遥感技术与应用, 2019, 34(6): 1227-1234.
[10] 王振占,李娇阳. 风云三号卫星微波探测仪定标原理及算法[J]. 遥感技术与应用, 2019, 34(6): 1197-1204.
[11] 谷松岩,王振占,卢乃锰,杨忠东,李靖,张升伟,杨磊,吴雪宝. 风云三号微波湿度计航空校飞辐射定标原理及数据分析[J]. 遥感技术与应用, 2019, 34(6): 1205-1211.
[12] 高玥,徐慧,刘国. GSMaP遥感降水产品对典型极端降水事件监测能力评估[J]. 遥感技术与应用, 2019, 34(5): 1121-1132.
[13] 刘克俭,闫敏,冯琦. 多层土壤观测数据同化的森林碳、水通量模拟[J]. 遥感技术与应用, 2019, 34(5): 950-958.
[14] 李瑞娟, 李兆富, 郝睿, 张舒昱, 潘剑君. 亚洲区域AMSR2与SMOS土壤水分产品对比研究[J]. 遥感技术与应用, 2019, 34(1): 125-134.
[15] 张帅,师春香,梁晓,贾炳浩,吴捷. 风云三号积雪覆盖产品评估[J]. 遥感技术与应用, 2018, 33(1): 35-46.