Please wait a minute...
img

官方微信

遥感技术与应用  2020, Vol. 35 Issue (1): 97-110    DOI: 10.11873/j.issn.1004-0323.2020.1.0097
土壤水分专栏     
基于地基微波辐射计数据评估不同土壤介电模型反演土壤湿度的适用性
王作亮1,2(),文军3(),刘蓉1,李振朝1,郑东海4,王欣1
1. 中国科学院西北生态环境资源研究院 中国科学院寒旱区陆面过程与气候变化重点实验室,甘肃 兰州 730000
2. 中国科学院大学,北京 100049
3. 成都信息工程大学 大气科学学院高原大气与环境四川省重点实验室,四川 成都 610225
4. 中国科学院青藏高原研究所 国家青藏高原科学数据中心,北京 100101
Evaluation of the Applicability of Different Dielectric Models for Soil Moisture Retrieval based on the Ground-based Radiometer Measurements
Zuoliang Wang1,2(),Jun Wen3(),Rong Liu1,Zhenchao Li1,Donghai Zheng4,Xin Wang1
1. Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. College of Atmospheric Sciences, Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, Chengdu University of Information Technology, Chengdu 610225, China
4. National Tibetan Plateau Data Center, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
 全文: PDF(4748 KB)   HTML
摘要:

以青藏高原开展的L波段地基微波辐射(ELBARA-III型)综合观测试验为依据,基于 τ - ω 辐射传输模型评估了Wang-Schmugge、Mironov、Dobson和 Four-Phase 4种土壤介电模型对L波段微波亮温模拟及土壤湿度反演的影响。结果表明:相同植被和粗糙度参数化方案条件下,4种土壤介电模型对微波亮温模拟存在明显差异,当土壤湿度小于0.23 m3·m-3时,Wang-Schmugge模型与其他3种土壤介电模型微波亮温模拟结果差异最为显著,水平和垂直极化微波亮温模拟最大差值可达8.0 K和4.4 K;当模拟土壤湿度大于0.23 m3·m-3时,Four-phase模型模拟的微波亮温显著高于其他3种土壤介电模型模拟结果;当土壤湿度饱和时,4种土壤介电模型间水平和垂直极化微波亮温模拟最大差值约为6.1 K和4.8 K,且4种土壤介电模型对水平极化微波亮温模拟的差异比垂直极化模拟的差异更为显著。而基于4种介电模型的土壤湿度反演对比试验表明,水平极化条件下基于Wang-Schmugge模型反演土壤湿度,较其他参数化方案,能有效减轻反演土壤湿度对观测土壤湿度的低估,Mironov模型减轻了垂直极化条件下反演土壤湿度对观测值的高估程度。在现有 τ - ω 模型参数化方案的基础上,总结了4种土壤介电模型在青藏高原典型草地下垫面的适用性,将为星载L波段辐射计青藏高原土壤湿度反演应用提供客观的土壤介电模型方案选取依据。

关键词: L波段被动微波微波亮温土壤介电模型土壤湿度反演    
Abstract:

Based on soil moisture and freeze/thaw comprehensive experiments conducted at the north-eastern part of the Tibetan Plateau, the L-band brightness temperature, the in-situ soil moisture and temperature, vegetation leaf area index are measured simultaneously for the purpose of evaluating performances on forward brightness temperature simulation and soil moisture retrieval using four dielectric constant models, including Wang-Schmugge, Mironov, Dobson, and Four-Phase model. The forward brightness temperature simulations indicate that the difference of simulated brightness temperature between Wang schmugge model and the other three dielectric constant models is most significant at lower soil moisture content condition (soil moisture is less than 0.23 m3·m-3) , nevertheless, the difference of Mironov model simulation is most significant in contrast with the ones of other three models at higher soil moisture condition (soil moisture is greater than 0.23 m3·m-3). The practical retrieval of soil moisture from the ground-based radiometer measurements indicate that Wang-Schmugge model can effectively reduce the underestimation of soil moisture at the horizontal polarization, this resulted an improvement to the accuracy of retrieved soil moisture. Mironov model can reduce the underestimation of retrieved soil moisture at the vertical polarization. In accordance with a state-of-the-art parameterization scheme, the evaluation of performances of four dielectric constant models at the typical alpine meadow is potential for selecting optimum soil moisture retrieval by using soil dielectric model from space-borne L-band radiometer observation over the Tibetan Plateau

Key words: L-Band    Passive microwave    Microwave brightness temperature    Soil permittivity model    Soil moisture retrieval
收稿日期: 2019-11-03 出版日期: 2020-04-01
ZTFLH:  TP721.1  
基金资助: 国家自然科学基金项目(41971308);国家自然科学基金培育项目(91737103)
通讯作者: 文军     E-mail: zuoliangwang@lzb.ac.cn;jwen@cuit.edu.cn
作者简介: 王作亮(1990-),男,甘肃景泰人,工程师,主要从事青藏高原土壤湿度观测模拟研究。E?mail:zuoliangwang@lzb.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王作亮
文军
刘蓉
李振朝
郑东海
王欣

引用本文:

王作亮,文军,刘蓉,李振朝,郑东海,王欣. 基于地基微波辐射计数据评估不同土壤介电模型反演土壤湿度的适用性[J]. 遥感技术与应用, 2020, 35(1): 97-110.

Zuoliang Wang,Jun Wen,Rong Liu,Zhenchao Li,Donghai Zheng,Xin Wang. Evaluation of the Applicability of Different Dielectric Models for Soil Moisture Retrieval based on the Ground-based Radiometer Measurements. Remote Sensing Technology and Application, 2020, 35(1): 97-110.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2020.1.0097        http://www.rsta.ac.cn/CN/Y2020/V35/I1/97

图1  地表被动微波遥感综合观测试验概况
土壤基质密度 孔隙度 植被单次散射反照率 沙土含量 粘土含量 体密度 频率 观测角
/(g/cm3) /m3·m-3 /% /% /(g/m-3) /GHz
2.65 0.50 0.05 32.30 10.50 1.12 1.41 50.0
表1  辐射传输模型中的土壤及植被参数
图2  频率为1.4 GHz模拟情形①土壤湿度对介电常的影响
图3  频率为1.4 GHz时模拟情形①土壤介电模型间差异对微波亮温模拟的影响
图4  频率为1.4 GHz模拟情形(2)温度对介电常的影响
图5  ELBARA-III 50°入射角观测微波亮温与不同介电模型条件下模拟的微波亮温时间序列
图6  4种介电模型条件下模拟微波亮温与 50°水平和垂直极化观测微波亮温统计结果
图7  在水平和垂直极化条件下,4种土壤介电常数模型反演的土壤湿度与2 cm和5 cm观测土壤湿度时间序列
2 cm 5 cm
土壤介电模型

RMSE

/m3·m-3

ubRMSE

/m3·m-3

bias

/m3·m-3

R2

RMSE

/m3·m-3

ubRMSE

/m3·m-3

bias

/m3·m-3

R2
TB-H Wang-Schmugge 0.052 0.045 -0.027 0.80 0.047 0.044 -0.016 0.78
Dobson 0.061 0.051 -0.036 0.78 0.057 0.052 -0.025 0.76
Four-phase 0.061 0.052 -0.035 0.79 0.058 0.054 -0.024 0.77
Mironov 0.065 0.048 -0.046 0.79 0.059 0.048 -0.034 0.77
表2  水平极化条件下不同土壤介电模型反演土壤湿度与观测土壤湿度的统计结果
2 cm 5 cm
土壤介电模型

RMSE

/m3·m-3

ubRMSE

/m3·m-3

Bias

/m3·m-3

R2

RMSE

/m3·m-3

ubRMSE

/m3·m-3

Bias

/m3·m-3

R2
TB-V Wang-Schmugge 0.074 0.046 0.059 0.81 0.083 0.046 0.071 0.79
Dobson 0.076 0.045 0.063 0.84 0.088 0.048 0.074 0.82
Four-phase 0.080 0.045 0.067 0.85 0.091 0.048 0.079 0.82
Mironov 0.061 0.043 0.046 0.84 0.072 0.045 0.057 0.82
表3  垂直极化条件下不同土壤介电模型反演土壤湿度与观测土壤湿度的统计结果
1 Seneviratne S I , Corti T , Davin E L ,et al .Investigating Soil Moisture-Climate Interactions in a Changing Climate: A Review[J].Earth Science Reviews,2010,99(3/4):125-161.
2 Wen Jun , Lan Yongchao , Su Zhongbo ,et al .Advances in Observation and Modeling of Land Surface Processes over The Soure Region of Yellow River[J].Advances in Earth Science,2011,26(6):575-585.文军,蓝永超,苏中波, 等 .黄河源区陆面过程观测和模拟研究进展[J].地球科学进展,2011,26(6):575-585.
3 Entekhabi D , Njoku E G , Neill P E O ,et al .The Soil Moisture Active Passive (SMAP) Mission[J].Proceedings of the IEEE,2010,98(5):704-716.
4 Zhao Yizhou , Ma Yaoming , Huang Zhen ,et al .The Retrieval of Soil Moistue from TRMM/ TMI Data in Central of Tibetan Plateau[J].Plateau Meteorology,2007,26(5):952-957.赵逸舟,马耀明,黄镇, 等 .利用TRMM/TMI资料反演青藏高原中部土壤湿度[J].高原气象,2007,26(5):952-957.
5 Colliander A , Jackson T J , Bindlish R ,et al .Validation of SMAP Surface Soil Moisture Products with Core Validation Sites[J].Remote Sensing of Environment,2017,191:215-231.
6 Zhao Tianjie .Passive Microwave Remote Sensing of Soil Moisture[D].Beijing:Beijing Normal University,2012.赵天杰.被动微波遥感土壤水分[D].北京:北京师范大学,2012.
7 Wigneron J P , Jackson T J , O'neill P ,et al .Modelling the Passive Microwave Signature from Land Surfaces: A Review of Recent Results and Application to the L-band SMOS & SMAP Soil Moisture Retrieval Algorithms[J].Remote Sensing of Environment,2017,192(1):238-262.
8 Wen J , Jackson T J , Bindlish R ,et al .Retrieval of Soil Moisture and Vegetation Water Content Using SSM/I Data over a Corn and Soybean Region[J].Journal of Hydrometerology,2005,6(6):854-863.
9 Mo T , Choudhury B J , Schmugge T J ,et al .A model for Microwave Emission from Vegetation-Covered Fields[J].Journal of Geophysical Research: Oceans,1982,87(C13):11229-11237.
10 Kerr Y H , Waldteufel P , Richaume P ,et al .The SMOS Soil Moisture Retrieval Algorithm[J].IEEE Transactions on Geoscience and Remote Sensing,2012,50(5):1384-1403.
11 O'Neill P , Njoku E , Jackson T ,et al .SMAP Algorithm Theoretical Basis Document: Level 2 & 3 Soil Moisture (Passive) Data Products[Z]. In:Jet Propulsion Lab., California Inst.Technol.,Pasadena, CA, USA, JPL D- 66480,2015.
12 Shi Xiaokang , Wen Jun , Wang Lei ,et al .Application of AMSR-E Brightness Temperature Data in Observation and Simulation of Soil Moisture Variation over Northeast Plateau[J].Plateau Meteorology,2010,29(3):545-553.史小康,文军,王磊, 等 .AMSR-E卫星微波亮温数据在高原东北部土壤湿度观测和模拟中的应用[J].高原气象,2010,29(3):545-553.
13 Zheng D , Wang X , Van Der Velde R ,et al .Impact of Surface Roughness, Vegetation Opacity and Soil Permittivity on L-Band Microwave Emission and Soil Moisture Retrieval in the Third Pole Environment[J].Remote Sensing of Environment,2018,209(1):633-647.
14 Jin Xiao , Yang Wen , Zhao Jianqi .Study on the Prmittivity Mixing Model of Freezing Soil[J].Journal of Glaciology and Geocryology,2018,40(3):570-579.靳潇,杨文,赵剑琦.冻结土壤介电常数混合模型机理研究[J].冰川冻土,2018,40(3):570-579.
15 Van Dam R L , Borchers B , Hendrickx J M H :Methods for Prediction of Soil Dielectric Properties[J].Proceedings of SPIE,2005,5794:188-197.
16 Wang J R , Schmugge T J .An Empirical-model for the Complex Dielectric Permittivity of Soils as a Function of Water-Content[J].IEEE Transactions on Geoscience and Remote Sensing,1980,18(4):288-295.
17 Liu Jun , Zhao Shaojie , Jiang Lingmei ,et al .Research Progress on Dielectric Constant Model of Soil at Microwave Frequency[J].Remote Sensing Information,2015,30(1):5-13.刘军,赵少杰,蒋玲梅, 等 .微波波段土壤的介电模型研究进展[J].遥感信息,2015,30(1):5-13.
18 Dobson M C , Ulaby F T , Hallikainen M T ,et al .Microwave Dielectric Behavior of Wet Soil-Part II: Dielectric Mixing Models[J].IEEE Transactions on Geoscience and Remote Sensing,1985,23(1):35-46.
19 Birchak J R , Gardner C G , Hipp J E ,et al .High Dielectric Constant Microwave Probes for Sensing Soil Moisture[J].Proceedings of the IEEE,1974,62(1):93-98.
20 Mironov V L , Dobson M C , Kaupp V H ,et al .Generalized Refractive Mixing Dielectric Model for Moist Soils[J].IEEE Transactions on Geoscience and Remote Sensing,2004,42(4):773-785.
21 Mironov V , Kerr Y , Wigneron J P ,et al .Temperature and Texture Dependent Dielectric Model for Moist Soils at 1.4 GHz[J].IEEE Geoscience and Remote Sensing Letters,2013,10(3):419-423.
22 Mironov V L , Bobrov P P , Fomin S V .Dielectric Model of Moist Soils with Varying Clay Content in the 0.04 to 26.5 GHz Frequency Range[C]//2013 International Siberian Conference on Control and Communications,Krasnoyarsk, Russia,2013.
23 Mironov V L , Kosolapova L G , Fomin S V .Physically and Mineralogically based Spectroscopic Dielectric Model for Moist Soils[J].IEEE Transactions on Geoscience and Remote Sensing,2009,47(7):2059-2070.
24 Mironova V L , Kosolapova L G , Lukin Y I ,et al .Temperature and Texture Dependent Dielectric Model for Frozen and Thawed Mineral Soils at A Frequency of 1.4 GHz[J].Remote Sensing of Environment,2017,200(1):240-249.
25 Stähli M , Stadler D .Measurement of Water and Solute Dynamics in Freezing Soil Columns with Time Domain Reflectometry[J].Journal of Hydrology,1997,195(1):352-369.
26 Schwank M , Stahli M , Wydler H ,et al .Microwave L-Band Emission of Freezing Soil[J].IEEE Transactions on Geoscience and Remote Sensing,2004,42(6):1252-1261.
27 Zheng D , Li X , Wang X ,et al .Sampling Depth of L-Band Radiometer Measurements of Soil Moisture and Freeze-thaw Dynamics on the Tibetan Plateau[J].Remote Sensing of Environment,2019,226(1):16-25.
28 Zheng D , Wang X , Van Der Velde R ,et al .L-Band Microwave Emission of Soil Freezesc-Thaw Process in the Third Pole Environment[J].IEEE Transactions on Geoscience and Remote Sensing,2017,55(9):5324-5338
29 Sun Yayong .Synergeric Inversion of Surface Soil Moisture based on C/L Band Active and Passive Microwave Remote Sensing[D].Beijing:China Institure of Water Resoure and Hydropower Research,2018.孙亚勇. 基于C和L波段主被动微波遥感的土壤水分协同反演研究[D].北京:中国水利水电科学研究院,2018.
30 Chen Zixuan .Effects of Artificial Inter-ference on Plant Diversity and Productivity in Maqu Degraded Alpine Meadow[D].Lanzhou:Gansu Agricultural University,2008.陈子萱. 人工扰动对玛曲高寒沙化草地植物多样性和生产力的影响[D].兰州:甘肃农业大学,2008.
31 Xiong Yuanqing , Wu Pengfei , Zhang Hongzhi ,et al .Dynamics of Soil Water Conservation during the Degradation Process of the Zoige Alpine Wetland[J].Acta Ecologica Sinica,2011,31(19):5780-5788.熊远清,吴鹏飞,张洪芝, 等 .若尔盖湿地退化过程中土壤水源涵养功能[J].生态学报,2011,31(19):5780-5788.
32 Schwank M , Wiesmann A , Werner C ,et al .ELBARA II an L-Band Radiometer System for Soil Moisture Research[J].Sensors,2010,10(1):584-612.
33 Zheng D , Wang X , Velde R V D ,et al .Assessment of Soil Moisture SMAP Retrievals and ELBARA-III Measurements in a Tibetan Meadow Ecosystem[J].IEEE Geoscience and Remote Sensing Letters,2019,99(1):1-5.
34 Christian M , Weber D , Max W ,et al.ELBARA ,the ETH L-Band Radiometer for Soil-Moisture Research[C]//IEEE International Geoscience & Remote Sensing Symposium.Institute of Electrical and Electronics Engineers, Toulouse, France,2003.
35 European Space Agency .SMOS Gets Help from Tibet[EB/OL].,29/01/2016,23/06/2019.
36 Pellarin T , Kerr Y H , Wigneron J .Global Simulation of Brightness Temperatures at 6.6 and 10.7 GHz over Land based on SMMR Data Set Analysis[J].IEEE Transactions on Geoscience and Remote Sensing,2006,44(9):2492-2505.
37 Campbell .CS616Water Content Reflectometer[EB/OL].,2002,27/06/2019.
38 Escorihuela M J , Chanzy A , Wigneron J P ,et al .Effective Soil Moisture Sampling Depth of L-band Radiometry: A Case Study[J].Remote Sensing of Environment,2010,114(5):995-1001.
39 Roy A , Toose P , Williamson M ,et al .Response of L-Band Brightness Temperatures to Freeze/Thaw and Snow Dynamics in A Prairie Environment from Ground-based Radiometer Measurements[J].Remote Sensing of Environment,2017,191:67-80.
40 He Y , Guo X , Wilmshurst J F .Comparison of Different Methods for Measuring Leaf Area Index in a Mixed Grassland[J].Canadian Journal of Plant Science. Revue Canadienne De Phytotechnie,2007,87(4):803-813.
41 Choudhury B J , Schmugge T J , Mo T .A Parameterization of Effective Soil Temperature for Microwave Emission[J].Journal of Geophysical Research:Oceans,1982,87(C2):1301-1304.
42 Wang J R , Choudhury B J .Remote Sensing of Soil Moisture Content over Bare Field at 1.4 GHz Frequency[J].Journal of Geophysical Research-Oceans,1981,86(NC6):5277-5282.
43 Wigneron J , Chanzy A , Kerr Y H ,et al .Evaluating An Improved Parameterization of the Soil Emission in L-MEB[J].IEEE Transactions on Geoscience and Remote Sensing,2011,49(4):1177-1189.
44 Wigneron J P , Kerr Y , Waldteufel P ,et al .L-Band Microwave Emission of the Biosphere (L-MEB) Model: Eescription and Calibration Against Experimental Data Sets over Crop Fields[J].Remote Sensing of Environment,2007,107(4):639-655.
[1] 陈家利,郑东海,庞国锦,李新. 基于SMAP亮温数据反演青藏高原玛曲区域土壤未冻水[J]. 遥感技术与应用, 2020, 35(1): 48-57.
[2] 胡路,赵天杰,施建成,李尚楠,樊东,王平凯,耿德源,肖青,崔倩,陈德清. 基于地基微波辐射观测的土壤水分反演算法评估[J]. 遥感技术与应用, 2020, 35(1): 74-84.
[3] 陈秀雪,李晓峰,王广蕊,赵凯,郑兴明,姜涛. 基于积雪调查数据的东北地区被动微波积雪遥感产品精度验证与分析[J]. 遥感技术与应用, 2019, 34(6): 1181-1189.
[4] 陈鹤, 车涛, 戴礼云. 基于FY-MWRI的中国西部被动微波积雪判识算法[J]. 遥感技术与应用, 2018, 33(6): 1037-1045.
[5] 王宝刚,晋锐,赵泽斌,亢健. 被动微波遥感在地表冻融监测中的应用研究进展[J]. 遥感技术与应用, 2018, 33(2): 193-201.
[6] 侯海艳,侯金,黄春林,王昀琛. 基于人工神经网络和AMSR2多频微波亮温的北疆地区雪深反演[J]. 遥感技术与应用, 2018, 33(2): 241-251.
[7] 胡文星,柴琳娜,赵少杰,赵天杰. 寒区复杂地表冻融状态判别式算法改进[J]. 遥感技术与应用, 2017, 32(3): 395-405.
[8] 王增艳,王建,车涛. 机载L波段微波辐射计数据反演表层土壤水分研究[J]. 遥感技术与应用, 2017, 32(2): 185-194.
[9] 臧琳,宋冬梅,单新建,崔建勇,邵红梅,沈晨,时洪涛,宋先月. 基于被动微波与时空联合算法的云下像元LST重建[J]. 遥感技术与应用, 2016, 31(4): 764-772.
[10] 邱玉宝,郭华东,石利娟,施建成. 基于AMSR-E的全球陆表被动微波发射率数据集[J]. 遥感技术与应用, 2016, 31(4): 809-819.
[11] 杜一男,李晓峰,赵凯,武黎黎,郑兴明,姜涛. NASA系列雪参数反演算法在单像元内的时间序列验证与分析[J]. 遥感技术与应用, 2016, 31(2): 332-341.
[12] 郑雷,张廷军,车涛,钟歆玥,王康. 利用实测资料评估被动微波遥感雪深算法[J]. 遥感技术与应用, 2015, 30(3): 413-423.
[13] 王琦,柴琳娜,赵少杰,张涛. 基于多角度微波辐射亮温数据反演冬小麦光学厚度[J]. 遥感技术与应用, 2015, 30(3): 424-430.
[14] 武黎黎,李晓峰,赵凯,郑兴明,丁艳玲,李洋洋,任建华. 被动微波雪深反演算法在东北地区的时空分析与验证[J]. 遥感技术与应用, 2015, 30(3): 565-572.
[15] 侯小刚,张璞,郑照军,李帅. 基于多源数据的阿勒泰地区雪深反演研究[J]. 遥感技术与应用, 2015, 30(1): 178-185.