Please wait a minute...
img

官方微信

遥感技术与应用  2020, Vol. 35 Issue (1): 111-119    DOI: 10.11873/j.issn.1004-0323.2020.1.0111
土壤水分专栏     
基于CCI土壤水分产品的干旱指数精度评价及其对东北地区粮食产量的影响
李雷1,2(),郑兴明1,3(),赵凯1,3,李晓峰1,3,王广蕊1,2
1. 中国科学院东北地理与农业生态研究所,吉林 长春130102
2. 中国科学院大学,北京 100049
3. 中国科学院长春净月潭遥感实验站,吉林 长春130102
Precision Evaluation of Drought Index based on CCI Soil Moisture Products and Its Effect on Grain Yield in Northeast China
Lei Li1,2(),Xingming Zheng1,3(),Kai Zhao1,3,Xiaofeng Li1,3,Guangrui Wang1,2
1. Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. Changchun Jingyuetan Remote Sensing Test Site of Chinese Academy of Sciences, Changchun 130102, China
 全文: PDF(2736 KB)   HTML
摘要:

土壤水分是监测作物旱情的基本因子,以欧空局1978~2014年微波遥感土壤水分产品、中国经济与社会发展统计数据库以及气象数据为基础,结合土壤水分亏缺指数(Soil Water Deficit Index, SWDI)分析东北地区的干旱程度与玉米亩产的关系。结果表明:①东北三省干旱程度空间上呈现自东北向西南逐渐加重的空间分布模式;②基于CCI (Climate Change Initiative)土壤水分产品计算的SWDI干旱指数与降雨量和气温有良好的相关关系,可用于评估干旱发生的严重程度;③玉米生长季关键需水期——7月的SWDI与玉米产量的相关性最好,二者在黑龙江、吉林和辽宁省的R2分别为0.43、0.78和0.38,非常适合用于评估干旱对玉米单产的影响。该结论对于研究大范围土壤水分含量对农作物产量的影响以及相关农业决策具有重要指导意义。

关键词: 微波遥感土壤水分干旱指数玉米产量东北地区    
Abstract:

Soil moisture is the basic factor for monitoring crop drought. Based on the microwave remote sensing soil moisture products of ESA from 1978 to 2014, the statistical database of China's economic and social development and meteorological data, combined with the Soil Moisture Deficit Index (SWDI), the relationship between the degree of drought in Northeast China and corn yield was analyzed. The results show that: (1) the drought level of the three provinces is increasing from northeast to southwest; (2) the SWDI drought index calculated based on CCI (Climate Change Initiative) soil moisture products has a good correlation with rainfall and temperature, which can be used to evaluate the severity of drought; (3) the correlation between SWDI and maize yield is the best in the key water demand period (July), and R2 of Heilongjiang, Jilin and Liaoning provinces are 0.43, 0.78 and 0.38 respectively, which is very suitable for quantifying the effect of drought on maize yield. This conclusion has important guiding significance for the study of the influence of soil moisture content on crop yield and the relevant agricultural decision-making.

Key words: Microwave remote sensing    Soil moisture    Drought index    Corn yield    Northeast China
收稿日期: 2019-12-20 出版日期: 2020-04-01
ZTFLH:  TP79  
基金资助: 吉林科技发展计划优秀青年人才工程项目(20170520078JH);国家自然科学基金面上项目(41971323)
通讯作者: 郑兴明     E-mail: lilei@iga.ac.cn;zhengxingming@iga.ac.cn
作者简介: 李 雷(1991-),男,河北定州人,博士研究生,主要从事土壤水分、定量遥感研究。E?mail:lilei@iga.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李雷
郑兴明
赵凯
李晓峰
王广蕊

引用本文:

李雷,郑兴明,赵凯,李晓峰,王广蕊. 基于CCI土壤水分产品的干旱指数精度评价及其对东北地区粮食产量的影响[J]. 遥感技术与应用, 2020, 35(1): 111-119.

Lei Li,Xingming Zheng,Kai Zhao,Xiaofeng Li,Guangrui Wang. Precision Evaluation of Drought Index based on CCI Soil Moisture Products and Its Effect on Grain Yield in Northeast China. Remote Sensing Technology and Application, 2020, 35(1): 111-119.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2020.1.0111        http://www.rsta.ac.cn/CN/Y2020/V35/I1/111

图1  东北三省土地利用类型及气象站点分布 审图号:GS(2019)3266
SWDI值 干旱程度 干旱影响程度
SWDI > -0.5 无旱 地表正常或湿润
-1.0 < SWDI ≤ -0.5 轻旱 地表蒸发量较小,近地表空气干燥
-2.0 < SWDI ≤ -1.0 中旱 土壤表面干燥,地表植物叶片有萎蔫现象
SWDI ≤ -2.0 重旱 土壤出现厚干土层,植物萎蔫、叶片干枯
表1  基于SWDI的干旱分级
图2  降水与干旱指数的相关关系
图3  温度与干旱指数相关关系
图4  东北三省玉米亩产散点图及变化趋势
图5  东北三省干旱程度时空分布
R 5月 6月 7月 8月 9月
黑龙江省 -0.14* -0.18* -0.66** -0.23* 0.45**
吉林省 0.76** -0.05 -0.88** -0.58** -0.16*
辽宁省 -0.51** -0.72** -0.62** -0.68** -0.16*
表2  中旱重旱像元百分比与玉米亩产相关性
1 Wilhite D A , Glantz M H .Understanding the Drought Phenomenon: the Role of Definitions [J].Water International,1985,10(1):111-120.
2 Narasimhan B , Srinivasan R .Development and Evaluation of Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) for Agricultural Drought Monitoring [J].Agricultural and Forest Meteorology,2005,133(1):69-88.
3 Su Z , Yacob A , Wen J ,et al .Assessing Relative Soil Moisture with Remote Sensing Data: Theory, Experimental Validation, and Application to Drought Monitoring over the North China Plain[J].Physics and Chemistry of the Earth,2003,28(1-3):89-101.
4 Wu J , Zhou L , Liu M .Establishing and Assessing the Integrated Surface Drought Index (ISDI) for Agricultural Drought Monitoring in Mid-Eastern China[J].International Journal of Applied Earth Observation and Geoinformation,2013,23(1):397-410.
5 Champagne C , McNairn H , Berg A A .Monitoring Agricultural Soil Moisture Extremes in Canada Using Passive Microwave Remote Sensing[J].Remote Sensing of Environment,2011,115(10):2434-2444.
6 Liu Zhiming , Zhang Bai , Yan Ming , al el .Some Research Advances and Trends on Soil Moisture and Drought Monitoring by Remote Sensing [J].Advance in Earth Sciences,2003,18(4):576-583.刘志明,张柏,晏明, 等 .土壤水分与干旱遥感研究的进展与趋势[J].地球科学进展,2003,18(4):576-583.
7 Zhang Chao .Study of the Evaluate and Zone Methods on Winter Wheat Drought Risk Based on GIS in Jing-Jin-Ji Region [D].Shijiazhuang:Hebei Normal University,2010.张超. 基于GIS干旱风险评估与区划方法研究[D].石家庄: 河北师范大学,2010.
8 Escorihuela M J , Quintana-Seguí P .Comparison of Remote Sensing and Simulated Soil Moisture Datasets in Mediterranean Landscapes [J].Remote Sensing of Environment,2016.180(1):99-114.
9 Al-Yaari A , Wigneron J P , Kerr Y .Testing Regression Equations to Derive Long-term Global Soil Moisture Datasets from Passive Microwave Observations [J].Remote Sensing of Environment,2016,180(1):453-464.
10 Gao Xiaorong , Wang Chunyi , Zhang Jiquan ,et al .Crop Water Requirement and Temporal-spatial Variation of Drought and Flood Disaster During Growth Stages for Maize in Northeast During Past 50 Years [J].Transactions of the Chinese Society of Agricultural Engineering,2012,28(12):101-109.高晓容,王春乙,张继权, 等 .近50年东北玉米生育阶段需水量及旱涝时空变化[J].农业工程学报,2012,28(12):101-109.
11 Zhao Xianli , Zhang Yushu , Ji Ruipeng ,et al .Characteristics of Temporal and Spatial Distribution of Main Agricultural Disasters in Liaoning Provinces [J].Agricultural Research in the Arid Areas,2013,31(5):130-135, 256.赵先丽,张玉书,纪瑞鹏, 等 .辽宁主要农业灾害时空分布特征[J].干旱地区农业研究,2013,31(5):130-135, 256.
12 Li Lei .Research on Water Suitability of Maize Planting Range in Northeast China [D].Changchun:Jilin University,2018.李雷. 东北地区玉米种植范围的水分适宜性研究[D].长春: 吉林大学,2018.
13 Yang Xiaojing , Xu Zongxue , Zuo Depeng ,et al .Spatio-Temporal Evolution Characteristics of Drought - Waterlogging in Three Provinces of Northeast China in Past 55 Years[J].Journal of Natural Disasters,2016,25(4):9-11.杨晓静, 徐宗学, 左德鹏, 等, 东北三省近55a旱涝时空演变特征[J].自然灾害学报,2016,25(4):9-11.
14 Yang Ruozi .Spatial-temporal Characteristics and Comprehensive Risk Assessment of Main Agro-meteorological Hazards for Maize in Northeast China[D].Beijing:Chinese Academy of Meteorological Sciences,2015.杨若子. 东北玉米主要农业气象灾害的时空特征与风险综合评估[D].北京: 中国气象科学研究院,2015.
15 Fu Lin .Agricultural Climate Yields Assessment Research in Three Provinces of Northeast China[D].Beijing:Chinese Academy of Meteorological Sciences,2011.符琳. 东北三省农业气候年景评估研究[D].北京:中国气象科学研究院,2011.
16 Zheng Xingming , Zhao Kai , Li Xiaofeng ,et al .Moisture Derived from Microwave Remote Sensing in Northeast China[J].Scientia Geographica Sinica,2015,35(3):334-339.郑兴明,赵凯,李晓峰, 等 .利用微波遥感土壤水分产品监测东北地区春涝范围和程度[J].地理科学,2015,35(3):334-339.
17 Liu Zhijuan , Yang Xiaoguang , Wang Wenfeng ,et al .Characteristics of Agricultural Climate Resources in Three Provinces of Northeast China Under Global Climate Change[J].Chinese Journal of Applied Ecology,2009,20(9):2199-2206.刘志娟,杨晓光,王文峰, 等 .气候变化背景下我国东北三省农业气候资源变化特征[J].应用生态学报,2009,20(9):2199-2206.
18 Liu Y Y , Dorigo W A , Parinussa R M .Trend-preserving Blending of Passive and Active Microwave Soil Moisture Retrievals[J].Remote Sensing of Environment,2012,123(1):280-297.
19 Liu Y Y , Parinussa R M , Dorigo W A .Developing an Improved Soil Moisture Dataset by Blending Passive and Active Microwave Satellite based Retrievals[J].Hydrology and Earth System Sciences,2011,15(1):425-436.
20 Wagner W , Dorigo W , de Jeu R .Fusion of Active and Passive Microwave Observations to Create an Essential Climate Variable Data Record on Soil Moisture[J].ISPRS Annals of the Photogrammetry,Remote Sensing and Spatial Information Sciences,2012,1(7):315-321.
21 Shi X Z , Yu D S , Warner E D ,et al .Soil Database of 1∶1 000 000 Digital Soil Survey and Reference System of the Chinese Genetic Soil Classification System[J].Soil Survey Horizons,2004,45(1):129-136.
22 Shi X Z , Yu D S , Warner E D ,et al .Cross Reference System for Translating between Genetic Soil Classification of China and Soil Taxonomy[J].Soil Science Society of America Journal,2006,70(1):78-83.
23 Martínez-Fernández J , González-Zamora A , Sánchez N .Satellite Soil Moisture for Agricultural Drought Monitoring:Assessment of the SMOS Derived Soil Water Deficit Index[J].Remote Sensing of Environment,2016,177(1):277-286.
24 Yan Nana .The Method of Drought Monitoring by Remote Sensing[D].Beijing:Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences,2005.闫娜娜. 基于遥感指数的旱情监测方法研究[D].北京: 中国科学院研究生院(遥感应用研究所),2005.
25 Allen R G , Pereira L S , Raes D ,et al. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements[M].FAO,Rome,1998:300.(Irrigation and Drainage Paper 56).
26 Savage M J , Ritchie J T , Bland W L .Lower Limit of Soil Water Availability[J].Agronomy Journal,1996,88(1):644–651.
27 Duan X W , Xie Y , Liu G .Field Capacity in Black Soil Region, Northeast China[J].China Geography Science,2010,20(5):406-413.
28 Saxton K E , Rawls W J .Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions[J].Soil Science Society of America Journal,2006,70(1):1569-1578.
29 Carrao H , Russo S , Sepulcre-Canto G ,et al .An Empirical Standardized Soil Moisture Index for Agricultural Drought Assessment from Remotely Sensed Data[J].International Journal of Applied Earth Observation and Geoinformation,2016,48(1):74-84.
30 McKee T B , Doeskin N J , Kleist J .The Relationship of Drought Frequency and Duration to Time Scales[J].American Meteorological Society,1993,1(1):179–184.
31 Hulme M , Osborn T J , Johns T C .Precipitation Sensitivity to Global Warming: Comparison of Observations with HadCM2 Simulations[J].Geophysical Research Letters,1998,25(17):3379-3382.
32 Lobell D B , Burke M B .Why are Agricultural Impacts of Climate Change so Uncertain? The Importance of Temperature Relative to Precipitation[J].Environmental Research Letters,2008,3(3):1-9.
33 Portoghese I , Vurro M , Lopez A .Assessing the Impacts of Climate Change on Water Resources: Experiences from the Mediterranean Region [M].Germany,Springer International Publishing,2015.
34 Meng Fanchao .Observation and Simulation Study on Maize Growth and Yield Under Climate Change in Northeast China[D].Beijing:Chinese Academy of Meteorological Sciences,2015.孟凡超. 气候变化对东北玉米生长和产量影响的观测与模拟[D].北京: 中国气象科学研究院,2015.
35 Cheng Yeqing .Spatial Pattern Change and Its Driving Factors of Grain Per Unit Area Yield in Northeast China[J].Journal of Natural Resources,2009,24(9):1541-1549.程叶青.东北地区粮食单产空间格局变化及其动因分析[J].自然资源学报,2009,24(9):1541-1549.
36 Niyogi D , Liu X , Andresen J ,et al .Crop Models Capture the Impacts of Climate Variability on Corn Yield[J].Geophysical Research Letters,2015,42(1):3356-3363.
37 Yang Xiaochen , Ming Bo , Tao Hongbin ,et al .Spatial Distribution Characteristics and Impact on Spring Maize Yield of Drought in Northeast China[J].Chinese Journal of Eco-Agriculture,2015,23(6):758-767.杨晓晨,明博,陶洪斌, 等 .中国东北春玉米区干旱时空分布特征及其对产量的影响[J].中国生态农业学报,2015,23(6):758-767.
38 Zhang Shujie , Zhang Yushu , Ji Ruipeng ,et al .Analysis of Spatio-Temporal Characteristics of Drought for Maize in Northeast China[J].Agricultural Research in the Arid Areas,2011,29(1):231-236.张淑杰,张玉书,纪瑞鹏, 等 .东北地区玉米干旱时空特征分析[J].干旱地区农业研究,2011,29(1):231-236.
39 Kurum M , Lang R H , O’Neill P E ,et al .L-band Radar Estimation of Forest Attenuation for Active/Passive Soil Moisture Inversion[J].IEEE Transactions on Geoscience and Remote Sensing,2009,47(9):3026-3040.
40 Zeng J Y , Li Z , Chen Q ,et al .Evaluation of Remotely Sensed and Reanalysis Soil Moisture Products over the Tibetan Plateau Using In-situ Observations[J].Remote Sensing of Environment,2015,163(15):91-110.
41 Dorigo W A , Gruber A , De Jeu R A M ,et al .Evaluation of the ESA CCI Soil Moisture Product Using Ground-based Observations [J].Remote Sensing of Environment,2015,162(1):380-395.
[1] 王树果, 马春锋, 赵泽斌, 魏龙. 基于Sentinel-1及Landsat 8数据的黑河中游农田土壤水分估算[J]. 遥感技术与应用, 2020, 35(1): 13-22.
[2] 罗家顺,邱建秀,赵天杰,王大刚. 基于Sentinel-1数据的黑河中游土壤水分反演[J]. 遥感技术与应用, 2020, 35(1): 23-32.
[3] 陈家利,郑东海,庞国锦,李新. 基于SMAP亮温数据反演青藏高原玛曲区域土壤未冻水[J]. 遥感技术与应用, 2020, 35(1): 48-57.
[4] 陆峥,韩孟磊,卢麾,彭雪婷,蒙莎莎,刘进,杨晓帆. 基于AMSR2多频亮温的黑河流域中上游土壤水分估算研究[J]. 遥感技术与应用, 2020, 35(1): 33-47.
[5] 胡路,赵天杰,施建成,李尚楠,樊东,王平凯,耿德源,肖青,崔倩,陈德清. 基于地基微波辐射观测的土壤水分反演算法评估[J]. 遥感技术与应用, 2020, 35(1): 74-84.
[6] 陈勇强,杨娜,胡新,佟明远. SMOS与SMAP过境时段表层土壤水分的稳定性研究[J]. 遥感技术与应用, 2020, 35(1): 58-64.
[7] 劳从坤,杨娜,徐少博,汤燕杰,张恒杰. 反演策略对SMOS土壤水分反演算法的影响研究[J]. 遥感技术与应用, 2020, 35(1): 65-73.
[8] 范悦,邱建秀,董建志,张小虎,王大刚. 基于Triple Collocation方法的微波土壤水分产品不确定性分析与时空变化规律研究[J]. 遥感技术与应用, 2020, 35(1): 85-96.
[9] 王树果,刘伟,梁亮. 基于Triple-Collocation方法的微波遥感土壤水分产品不确定性分析及数据融合[J]. 遥感技术与应用, 2019, 34(6): 1227-1234.
[10] 刘克俭,闫敏,冯琦. 多层土壤观测数据同化的森林碳、水通量模拟[J]. 遥感技术与应用, 2019, 34(5): 950-958.
[11] 王展鹏,宋立生,兰子焱,杨梦颖,鲁丹. 考虑下垫面类型的干旱指数比较研究[J]. 遥感技术与应用, 2019, 34(4): 865-873.
[12] 李瑞娟, 李兆富, 郝睿, 张舒昱, 潘剑君. 亚洲区域AMSR2与SMOS土壤水分产品对比研究[J]. 遥感技术与应用, 2019, 34(1): 125-134.
[13] 梅源, 王晶, 孙丽娜, 张旭东, 孟俊敏. 基于非线性薛定谔方程的高分三号图像内波参数反演[J]. 遥感技术与应用, 2018, 33(5): 915-922.
[14] 王宝刚,晋锐,赵泽斌,亢健. 被动微波遥感在地表冻融监测中的应用研究进展[J]. 遥感技术与应用, 2018, 33(2): 193-201.
[15] 白瑜,孟治国,赵凯. 像元尺度土壤水分监测网络及其对L波段土壤水分产品的初步验证结果[J]. 遥感技术与应用, 2018, 33(1): 78-87.