Please wait a minute...
img

官方微信

遥感技术与应用  2020, Vol. 35 Issue (1): 245-254    DOI: 10.11873/j.issn.1004-0323.2020.1.0245
遥感应用     
利用MODIS EVI时间序列数据分析福建省植被变化(2000~2017年)
王一帆1,2(),徐涵秋1,2()
1. 福州大学环境与资源学院 空间数据挖掘与信息共享教育部重点实验室,福建 福州 350116
2. 福州大学遥感信息工程研究所 福建省水土流失遥感监测评价重点实验室,福建 福州 350116
Analysis of Vegetation Changes in Fujian Province Using MODIS EVI Time Series Data (2000~2017)
Yifan Wang1,2(),Hanqiu Xu1,2()
1. College of Environment and Resources, Key Laboratory of Spatial Data Mining & Information Sharing of Ministry of Education, Fuzhou 350116, China
2. Institute of Remote Sensing Information Engineering, Fujian Provincial Key Laboratory of Remote Sensing of Soil Erosion, Fuzhou University, Fuzhou 350116, China
 全文: PDF(3679 KB)   HTML
摘要:

以全国森林覆盖率最高的福建省为研究对象,利用2000~2017年夏季的MODIS EVI植被指数数据和气象与非气象因子进行协同分析,以揭示近17年福建植被的时空变化及其影响因子。结果表明:研究期内福建的EVI均值整体上升,从2000年的0.454上升至2017年的0.505,17 a间上升了11.2%,表明福建省的植被整体处于变好的状态,且在中部和西南部的变化最明显。相关分析表明,在研究期内,气象因子(气温和降水)对EVI变化的影响不显著,植被的变好主要为非气象因子的作用。EVI的提高主要得益于2003年福建省建设生态省后森林覆盖率的提高,并和2012年开始的水土流失治理有明显关系,这说明人类活动的积极作用对福建植被的变好起到了关键的作用。

关键词: MODIS时间序列EVI植被福建    
Abstract:

Fujian province has the highest forest coverage rate in China for decades, which has played an important role in maintaining a good ecosystem quality in southeastern China. This study conducted an investigate aiming to find out the spatial and temporal changes of the vegetation status in Fujian and the impact factor involving in the vegetation growth during the period from 2000 to 2017, using the summer data of MODIS Enhanced Vegetation Index (EVI) product, associated with meteorological and non-meteorological data. The results showed that the mean EVI of Fujian rose as a whole during the 17 study years, from 0.454 in 2000 to 0.505 in 2017, increased by 11.2% in the period. This indicates that the overall vegetation status in Fujian has been improved, especially in, south and west parts of the province, while eastern coastal areas have shown decrease in vegetation coverage. Correlation analysis showed that during the study period, meteorological factors (temperature and precipitation) had no significant impact on the provincial EVI change, and the improvement of the vegetation status mainly due to non-meteorological factors. Both the construction of the ecological province in Fujian starting in 2003 and the soil erosion treatment starting in 2012 have strong relationships with vegetation increase. The increase of forest coverage rate and the decrease of soil erosion area have contributed significantly to the enhancement of Fujian’s EVI in the past 17 years.

Key words: MODIS    Time series    EVI    Vegetation    Fujian
收稿日期: 2018-09-16 出版日期: 2020-04-01
ZTFLH:  TP79  
基金资助: 国家重点研发计划专项(2016YFA0600302);福建省水利科技项目(MSK201704)
通讯作者: 徐涵秋     E-mail: wyfan63@163.com;hxu@fzu.edu.cn
作者简介: 王一帆(1994-),男,福建福安人,硕士研究生,主要从事环境与资源遥感研究。E?mail:wyfan63@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王一帆
徐涵秋

引用本文:

王一帆,徐涵秋. 利用MODIS EVI时间序列数据分析福建省植被变化(2000~2017年)[J]. 遥感技术与应用, 2020, 35(1): 245-254.

Yifan Wang,Hanqiu Xu. Analysis of Vegetation Changes in Fujian Province Using MODIS EVI Time Series Data (2000~2017). Remote Sensing Technology and Application, 2020, 35(1): 245-254.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2020.1.0245        http://www.rsta.ac.cn/CN/Y2020/V35/I1/245

图1  福建省行政区划及其气象站点分布图
年份 平均气温/℃ 平均降水量/mm
2000 26.13 168.32
2001 26.43 177.03
2002 26.07 201.38
2003 27.96 80.77
2004 26.52 192.63
2005 27.20 154.04
2006 26.54 174.37
2007 26.87 149.40
2008 27.22 147.67
2009 27.51 148.39
2010 27.41 130.77
2011 26.88 129.04
2012 26.52 132.75
2013 27.03 151.99
2014 27.46 190.60
2015 25.82 254.08
2016 26.86 237.80
2017 27.70 126.43
平均值 26.90 163.75
标准差 0.58 40.41
表1  福建省各年份夏季平均气温和平均降水量数据
年份 森林覆盖率/% 水土流失治理面积/万km2
2000 60.52 0.92
2001 60.52 0.96
2002 60.52 1.00
2003 60.52 1.15
2004 62.96 1.05
2005 62.96 1.13
2006 62.96 1.24
2007 62.96 1.36
2008 62.96 1.39
2009 63.10 1.44
2010 63.10 1.47
2011 63.10 1.49
2012 63.10 1.49
2013 65.95 3.26
2014 65.95 3.39
2015 65.95 3.40
2016 65.95 3.58
2017 65.95 3.03
表2  福建省各年份森林覆盖率和水土流失治理面积数据
年份 最小值 最大值 均值 标准差
2000 -0.062 0.690 0.454 0.058
2001 -0.076 0.646 0.458 0.062
2002 -0.095 0.666 0.468 0.064
2003 -0.081 0.650 0.454 0.063
2004 -0.028 0.642 0.451 0.059
2005 -0.080 0.636 0.452 0.060
2006 -0.061 0.678 0.481 0.068
2007 -0.065 0.673 0.477 0.064
2008 -0.049 0.678 0.475 0.066
2009 -0.052 0.715 0.488 0.074
2010 -0.161 0.707 0.496 0.079
2011 -0.038 0.700 0.484 0.075
2012 -0.050 0.725 0.481 0.073
2013 -0.059 0.702 0.484 0.072
2014 -0.086 0.741 0.494 0.081
2015 -0.054 0.687 0.493 0.073
2016 -0.050 0.731 0.506 0.078
2017 -0.033 0.765 0.505 0.081
表3  福建省近17 a时间序列的EVI统计数据
图2  2000~2017年福建夏季EVI均值的时序变化
图3  2000~2017年福建省各地级市夏季EVI均值的时序变化
图4  2000、2006、2011和2017年福建夏季EVI均值影像
图5  2000~2017年福建夏季EVI的变化检测
类别 级差 2000~2006 2006~2011 2011~2017 2000~2017
面积/km2 级面积/km2 百分比/% 面积/km2 级面积/km2 百分比/% 面积/km2 级面积/km2 百分比/% 面积/km2 级面积/km2 百分比/%
-3 0 10 0 13
变差 -2 99 7 261 6 127 20 333 16 56 10 088 8 237 6 184 5
-1 7 162 20 196 10 032 5 934
不变 0 73 575 73 575 59 82 094 82 094 66 84 659 84 658 68 55 646 55 646 45
1 43 053 21 494 28 968 61 426
变好 2 111 43 164 35 79 21 573 18 282 29 254 24 744 62 170 50
3 0 0 4 0
表4  EVI变化检测表
图6  2000~2017年间福建夏季平均气温和降水量的变化及其与EVI均值的关系
地级市 福州市 宁德市 莆田市 泉州市 厦门市 漳州市 三明市 龙岩市 南平市
R2 平均降水量与EVI均值 0.221 0.030 0.109 0.151 0.078 0.054 0.049 0.003 0.163
平均气温与EVI均值 0.011 0.046 0.314 0.216 0.006 0.055 0.187 0.207 0.004
表5  2000~2017年福建省各地市气象因子与EVI的关系表
站点号 R 2
平均降水量与EVI 平均气温与EVI
58725 0.001 0.042
58730 0.009 0.006
58731 0.084 0.108
58737 0.088 0.193
58754 0.011 0.099
58820 0.000 0.005
58846 0.001 0.068
58847 0.163 0.006
58911 0.005 0.100
58918 0.005 0.030
58926 0.000 0.012
58931 0.060 0.000
58944 0.469** 0.204
59133 0.004 0.017
59134 0.179 0.030
58834 0.091 0.005
58921 0.001 0.013
58933 0.075 0.389**
59126 0.003 0.012
59321 0.164 0.104
58734 0.059 0.016
58927 0.007 0.028
58744 0.002 0.205
58818 0.015 0.093
58837 0.025 0.247
58843 0.254 0.168
59113 0.141 0.089
58936 0.555 0.004
表6  研究期间福建省各气象站所在位置的气象因子与EVI关系表
图7  2000~2017年间福建省森林覆盖率和水土流失治理面积的变化及其与夏季EVI均值的关系
1 Chen X L , Zhao H M , Li P X ,et al .Remote Sensing Image-based Analysis of the Relationship between Urban Heat Island and Land Use/Cover Changes [J].Remote Sensing of Environment,2006,104(2):133-146.
2 Heimann M , Reichstein M .Terrestrial Ecosystem Carbon Dynamics and Climate Feedbacks [J].Nature,2008,451(7176):289-292.
3 Xu Hanqiu .A Remote Sensing Urban Ecological Index and Its Application [J].Acta Ecologica Sinica,2013,33(24):7853-7862.徐涵秋.城市遥感生态指数的创建及其应用[J].生态学报,2013,33(24):7853-7862.
4 Xu Wenxin , Zhou Yuke , Liang Juanzhu ,et al .A Breakpoints based Spatio-temporal Analysis of Tibetan Plateau Vegetation [J].Remote Sensing Technology and Application,2019,34(3):667-676.许文鑫,周玉科,梁娟珠, 等 .基于变化点的青藏高原植被时空动态变化研究[J].遥感技术与应用,2019,34(3):667-676.
5 Huete A , Didan K , Miura T ,et al .Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices [J].Remote Sensing of Environment,2002,83(1):195-213.
6 Wang Zhengxing , Liu Cuang , Alfredo Huete .From AVHRR- NDVI to MODIS-EVI: Advances in Vegetation Index Research [J].Acta Ecologica Sinica,2003,23(5):979-987.王正兴, 刘闯, Huete Alfredo.植被指数研究进展:从AVHRR-NDVI到MODIS-EVI[J].生态学报,2003,23(5):979-987.
7 Pan Y , Li L , Zhang J ,et al .Winter Wheat Area Estimation from MODIS-EVI Time Series Data Using the Crop Proportion Phenology Index [J].Remote Sensing of Environment,2012,119(3):232-242.
8 Xia Chuanfu , Li Jing , Liu Qiuhuo .Review of Advances in Vegetation Phenology Monitoring by Remote Sensing [J].Journal of Remote Sensing,2013,17(1):1-16.夏传福, 李静, 柳钦火.植被物候遥感监测研究进展[J].遥感学报,2013,17(1):1-16.
9 Li Zhen , Yan Fuli , Fan Xiangtao .The Variability of NDVI over Northwest China and Its Relation to Temperature and Precipitation [J].Journal of Remote Sensing,2005,9(3):308-313.李震, 阎福礼, 范湘涛.中国西北地区NDVI变化及其与温度和降水的关系[J].遥感学报,2005,9(3):308-313.
10 Solano R , Didan K , Jacobson A ,et al .MODIS Vegetation Indices (MOD 13C5 User’s Guide [EB/OL]..[2018-7-12]
11 Zhang Y , Song C , Band L E ,et al .Reanalysis of Global Terrestrial Vegetation Trends from MODIS Products: Browning or Greening? [J].Remote Sensing of Environment,2017,191:145-155.
12 Matsushita B , Yang W , Chen J ,et al .Sensitivity of the Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI) to Topographic Effects: A Case Study in High-density Cypress Forest [J].Sensors,2007,7(11):2636-2651.
13 Zhang X , Friedl M A , Schaaf C B ,et al .Monitoring Vegetation Phenology Using MODIS [J].Remote Sensing of Environment,2003,84(3):471-475.
14 Peng D , Wu C , Li C ,et al .Spring Green-up Phenology Products Derived from MODIS NDVI and EVI: Intercomparison, Interpretation and Validation Using National Phenology Network and AmeriFlux Observations [J].Ecological Indicators,2017,77:323-336.
15 Nagler P L , Cleverly J , Glenn E ,et al .Predicting Riparian Evapotranspiration from MODIS Vegetation Indices and Meteorological Data [J].Remote Sensing of Environment,2005,94(1):17-30.
16 Waring R H , Coops N C , Fan W ,et al .MODIS Enhanced Vegetation Index Predicts Tree Species Richness Across Forested Ecoregions in the Contiguous U.S.A.[J].Remote Sensing of Environment,2006,103(2):218-226.
17 Wardlow B D , Egbert S L , Kastens J H .Analysis of Time-series MODIS 250 m Vegetation Index Data for Crop Classification in the U.S. Central Great Plains [J].Remote Sensing of Environment,2007,108(3):290-310.
18 Shen M , Zhang G , Cong N ,et al .Increasing Altitudinal Gradient of Spring Vegetation Phenology during the Last Decade on the Qinghai-Tibetan Plateau [J].Agricultural & Forest Meteorology,2014,189-190:71-80.
19 Zhao Wei , Li Zhaoliang .Impact of Drought on the Vegetation State Using MODIS/EVI Time-series Data [J].Progress in Geography,2007,26(6):40-47.赵伟, 李召良.利用MODIS/EVI时间序列数据分析干旱对植被的影响[J].地理科学进展,2007,26(6):40-47.
20 Song Dongmei , Zhang Qian , Yang Xiuchun ,et al .Spatial and Temporal Characteristics of MODIS Vegetation Index in the Source Region of Three Rivers on Qinghai-Tibet Plateau in China [J].Geographical Research,2011,30(11):2067-2075.宋冬梅,张茜,杨秀春, 等 .三江源区MODIS植被指数时空分布特征[J].地理研究,2011,30(11):2067-2075.
21 Chen Yanli , Luo Yongming , Mo Wweihua ,et al .Differences between MODIS NDVI and MODIS EVI in Response to Climatic Factors [J].Journal of Natural Resources,2014,29(10):1802-1812.陈燕丽,罗永明,莫伟华, 等 .MODIS NDVI与MODIS EVI对气候因子响应差异[J].自然资源学报,2014,29(10):1802-1812.
22 Yang Tao , Huang Farong , Li Qian ,et al .Spatial-temporal Variation of NDVI for Growing Season and Its Relationship with Winter Snowfall in Northern Xinjiang [J].Remote Sensing Technology and Application,2017,32(6):1132-1140.杨涛,黄法融,李倩, 等 .新疆北部植被生长季NDVI时空变化及其与冬季降雪的关系[J].遥感技术与应用,2017,32(6):1132-1140.
23 Li Yafei , Liu Gaohuan .Characteristics of Vegetation Cover Changes in Lantsang Basin based on MODIS Vegetation Index Products (MOD13)[J].Resources Science,2012,34(7):1214-1221.李亚飞, 刘高焕.澜沧江流域植被覆盖变化特征及其与气候因子的关系[J].资源科学,2012,34(7):1214-1221.
24 Xiao X , Boles S , Liu J ,et al .Mapping Paddy Rice Agriculture in Southern China Using Multi-temporal MODIS Images [J].Remote Sensing of Environment,2005,95(4):480-492.
25 Zhang Zhen , Zhang Mi , Xiao Wei ,et al .Analysis of Temporal and Spatial Variations in NDVI of Aquatic Vegetation in Lake Taihu [J].Journal of Remote Sensing,2018,22(2):324-334.张圳,张弥,肖薇, 等 .太湖水生植被NDVI的时空变化特征分析[J].遥感学报,2018,22(2):324-334.
26 Li Hongjun , Zheng Li , Lei Yupin ,et al .Comparison of NDVI and EVI based on EOS/MODIS data [J].Progress in Geography,2007,26(1):26-32.李红军,郑力,雷玉平, 等 .基于EOS/MODIS数据的NDVI与EVI比较研究[J].地理科学进展,2007,26(1):26-32.
27 Yu Xinfang Luo Yiying Zhuang Dafang,et al .Comparative Analysis of Land Cover Change Detection in an Inner Mongolia Grassland Area[J].Acta Ecologica Sinica,2014,34(24):7192-7201.于信芳,罗一英,庄大方, 等 .土地覆盖变化检测方法比较——以内蒙古草原区为例[J].生态学报,2014,34(24):7192-7201.
28 Wang Huaiqing , Li Sanmei .Estimating of Sunshine Percentage Using the Cloud Classification Data from FY-2C[J].Journal of Remote Sensing,2013,17(5):1295-1310.王怀清, 李三妹.FY-2C云分类资料估算日照百分率[J].遥感学报,2013,17(5):1295-1310.
29 Mao Dehua , Wang Zongming , Luo Ling ,et al .Correlation Analysis between NDVI and Climate in Northeast China based on AVHRR and GIMMS Data Sources[J].Remote Sensing Technology and Application,2012,27(1):77-85.毛德华,王宗明,罗玲, 等 .基于MODIS和AVHRR数据源的东北地区植被NDVI变化及其与气温和降水间的相关分析[J].遥感技术与应用,2012,27(1):77-85.
30 Net Southeast .Fujian Green Development:from Eco-province to Ecological Civilization Pilot Demonstration Area [EB/OL]. (2016-5-4) [2018-8-16].. [东南网.福建绿色发展: 从生态省到生态文明先行示范区[EB/OL]. (2016-5-4) [2018-8-16].]
31 People’s Daily Online .Xi Jinping in Fujian:Lucid Waters and Lush Mountains Are Invaluable Assets [EB/OL]. (2014-10-31) [2018-8-17].. [人民网.习近平在福建治山治水: 绿水青山就是金山银山[EB/OL]. (2014-10-31) [2018-8-17].]
32 Xu Hanqiu .Spatiotemporal Dynamics of the Bare Soil Cover in the Hetian Basinal Area of County Changting, China, during the Past 35 Years[J].Acta Ecologica Sinica,2013,33(10):2946-2953.
32 徐涵秋 .福建省长汀县河田盆地区近35年来地表裸土变化的遥感时空分析[J].生态学报,2013,33(10):2946-2953.
33 Song X P , Hansen M C , Stehman S V ,et al .Global Land Change from 1982 to 2016[J].Nature,2018,560(7720):639-643.
[1] 王树果, 马春锋, 赵泽斌, 魏龙. 基于Sentinel-1及Landsat 8数据的黑河中游农田土壤水分估算[J]. 遥感技术与应用, 2020, 35(1): 13-22.
[2] 张新平,乔治,李皓,闫杰,张芳芳,赵栋锋,王得祥,康海斌,杨航,冯扬. 基于Landsat影像和不规则梯形方法遥感反演延安城市森林表层土壤水分[J]. 遥感技术与应用, 2020, 35(1): 120-131.
[3] 郑贵洲,熊良超,廖艳雯,王红平. 利用MODIS数据反演南海南部海表温度及时空变化分析[J]. 遥感技术与应用, 2020, 35(1): 132-140.
[4] 赵春亮,许文波,范锦龙. FY-3C中分辨率成像光谱仪数据的窄波段地表反照率验证研究[J]. 遥感技术与应用, 2020, 35(1): 153-162.
[5] 徐卫星,薛华柱,靳华安,李爱农. 融合遥感先验信息的叶面积指数反演[J]. 遥感技术与应用, 2019, 34(6): 1235-1244.
[6] 曹小杰,江洪,张兆明,何国金,赵晶晶. Landsat8卫星影像大气校正及其植被指数与SEVI性能比较[J]. 遥感技术与应用, 2019, 34(5): 983-991.
[7] 刘新杰,魏云霞,焦全军,孙奇,刘良云. 基于时序定量遥感的冬小麦长势监测与估产研究[J]. 遥感技术与应用, 2019, 34(4): 756-765.
[8] 张海东,田婷,张青,陆洲,石春林,谭昌伟,罗明,钱春花. 基于GF-1影像的耕地地块破碎区水稻遥感提取[J]. 遥感技术与应用, 2019, 34(4): 785-792.
[9] 黄静,王芳,张运. 基于PSI技术的芜湖市地面沉降时空特征分析[J]. 遥感技术与应用, 2019, 34(4): 829-838.
[10] 李春江,沈国状,张继超. 基于灰色系统理论的植被物理参数与极化分解参数的关联分析[J]. 遥感技术与应用, 2019, 34(4): 839-846.
[11] 冯艾琳,武晋雯,孟莹,姜鹏,董巍,张璇,方缘,刘斌. 基于MODIS GPP数据产品的辽宁省碳源/汇空间格局分布研究[J]. 遥感技术与应用, 2019, 34(4): 857-864.
[12] 冯婵莹, 汪子豪, 郑成洋. 基于分层线性回归的MODIS反照率产品降尺度方法研究[J]. 遥感技术与应用, 2019, 34(3): 602-611.
[13] 云增鑫, 郑光, 马利霞, 王晓菲, 卢晓曼, 路璐. 联合主被动遥感数据定量评价林下植被对叶面积指数估算的影响[J]. 遥感技术与应用, 2019, 34(3): 583-594.
[14] 许文鑫, 周玉科, 梁娟珠. 基于变化点的青藏高原植被时空动态变化研究 [J]. 遥感技术与应用, 2019, 34(3): 667-676.
[15] 李春江, 沈国状, 张继超. 基于灰色系统理论的植被物理参数与极化分解参数的关联分析—以鄱阳湖湿地为例[J]. 遥感技术与应用, 2019, 34(2): 284-292.