Please wait a minute...
img

官方微信

遥感技术与应用  2020, Vol. 35 Issue (2): 381-388    DOI: 10.11873/j.issn.1004-0323.2020.2.0381
数据与图像处理     
高分五号全谱段光谱成像仪影像数据质量评价研究
董胜越1,2,3(),孙根云1,杜永明3(),葛曙乐4
1.中国石油大学(华东)地球科学与技术学院,山东 青岛 266580
2.中国石油大学(华东),山东 青岛 266580
3.中国科学院遥感与数字地球研究所遥感科学国家重点实验室,北京 100101
4.中国资源卫星应用中心,北京 100094
Image Quality Assessment for Visual and Infrared Multis-pectral Imager of Gaofen-5
Shengyue Dong1,2,3(),Genyun Sun1,Yongming Du3(),Shule Ge4
1.School of Geosciences, China University of Petroleum, Qingdao 266580, China
2.College of Graduated, China University of Petroleum, Qingdao 266580, China
3.State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth of Chinese Academy of Sciences, Beijing, 100101, China
4.China Centre For Resources Satellite Data And Application, Beijing, 100094, China
 全文: PDF(1376 KB)   HTML
摘要:

高分五号卫星上搭载的我国自主研发的全谱段光谱成像仪是从可见光到长波红外光谱范围的星载多光谱成像仪,具有广泛的应用前景。对卫星影像进行质量评价,既是对遥感卫星是否满足设计指标的验证与检验,也可以为影像的处理与应用提供参考。利用信噪比、清晰度、信息量、辐射不均一性4个指标对高分五号全谱段光谱成像仪进行影像质量评价,并以美国陆地卫星Landsat 8影像为参考进行对比分析。结果表明:高分五号卫星全谱段光谱成像仪短波红外谱段的信噪比(320.44~388.42)略高于可见近红外谱段(208.24~238.03);近—短波红外谱段的清晰度(0.82~0.91)要高于其余谱段,尤其是长波红外谱段(0.01~0.21);可见短波红外谱段的信息量(9.01~9.97)要高于中长波红外谱段(5.71~8.31);所有12个谱段的辐射不均一性均小于2%。与Landsat 8的比较结果表明:在清晰度方面,全谱段光谱成像仪可见近红外谱段优于Landsat 8,其他谱段接近Landsat 8;在信息量方面,可见短波红外谱段与Landsat 8比较接近,但是B11、B12两个分裂窗谱段差距较大,分别相差5.23和5.61;在信噪比方面GF-5 VIMI仍有待进一步改善,又以B1、B2、B6 3个谱段落后Landsat 8最大,分别相差280.41、226.84和151.92。

关键词: 高分五号全谱段光谱成像仪影像质量评价Landsat 8    
Abstract:

Gaofen-5(GF-5) satellite was successfully launched on May 29, 2018. The Visual and Infrared Multispectral Imager(VIMI) developed independently by China is a multi-spectral imager in the range of visible band to long-wave infrared band, which has broad application prospects. The quality assessment of satellite image is not only the verification of whether the remote sensing satellite meets the design criteria, but also the reference for image processing and application. In this paper, the quality assessment for VIMI is provided, which provides reference for the processing and application of the image. Four indicators, named the Signal-to-Noise Ratio (SNR), clarity, information content and radiation heterogeneity, were used for quality assessment, and were compared with Landsat 8 images. The results show that the SNR of the shortwave infrared band (320.44~388.42) is slightly higher than that of the visible near-infrared band(208.24~238.03). The clarity (0.82~0.91) in the near-shortwave infrared band is higher than that in the other bands, especially in the long-wave infrared band (0.01~0.21). The information content of short-wave infrared band (9.01~9.97) is higher than that of medium-long-wave infrared band (5.71~8.31). The radiation heterogeneity of all 12 bands is less than 2%. The results of comparison with Landsat 8 show that ①the clarity of B1~B4 is better than Landsat 8 and this of other bands are close to Landsat 8,②for information content, B1~B10 of VIMI is close to Landsat 8, while this of B11 and B12 is less than Landsat 8 with 5.23 for B11 and 5.61 for B12,(3)for SNR, GF-5 VIMI still needs to be further improved, with 280.41、226.84 and 151.92 less than Landsat 8 for B1,B2 and B6.

Key words: GF-5    Visual and Infrared Multispectral Imager    Image Quality Assessment    Landsat 8
收稿日期: 2018-12-18 出版日期: 2020-07-10
ZTFLH:  TP75  
基金资助: 国家自然科学基金项目(41571359)
通讯作者: 杜永明     E-mail: shengyue_dong@qq.com;duym@radi.ac.cn
作者简介: 董胜越(1994-),男,山东潍坊人,硕士研究生,主要从事遥感影像质量评价研究。E?mail: shengyue_dong@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
董胜越
孙根云
杜永明
葛曙乐

引用本文:

董胜越,孙根云,杜永明,葛曙乐. 高分五号全谱段光谱成像仪影像数据质量评价研究[J]. 遥感技术与应用, 2020, 35(2): 381-388.

Shengyue Dong,Genyun Sun,Yongming Du,Shule Ge. Image Quality Assessment for Visual and Infrared Multis-pectral Imager of Gaofen-5. Remote Sensing Technology and Application, 2020, 35(2): 381-388.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2020.2.0381        http://www.rsta.ac.cn/CN/Y2020/V35/I2/381

参数名称参数
谱段范围

可见光—短波红外谱段:

B1:450~520 nm;B2:520~600 nm;B3:620~680 nm;

B4:760~860 nm;B5:1.55~1.75 um;B6:2.08~2.35 nm;

中波红外谱段:

B7:3.50~3.90 um;B8:4.85~5.05 um;

长波红外谱段:

B9:8.01~8.39 um;B10:8.42~8.83 um;

B11:10.3~11.3 um;B12:11.4~12.5 um

空间分辨率B1-B6:20 m;B7-B12:40 m
幅宽60 km
量化等级12 bit
设计指标要求

信噪比:B1-B4:>200;

B5-B6:>150

辐射不均一性:<3%

表1  全谱段光谱成像仪主要技术参数[1]
地物类型经纬度区域成像时间景数
沙子20° N、11° E附近撒哈拉沙漠2018.10.178
40° N、85° E附近塔克拉玛干沙漠2018.8.8~2018.10.128
水体30° N、90° E附近青藏高原内陆湖2018.8.26~2018.9.312
17° S、120° E附近澳大利亚西北沿海2018.8.24~2018.9.314
冰雪80° N、30° W附近格陵兰岛2018.8.4~2018.8.1020
表2  信噪比计算数据源列表
谱段编号信噪比谱段编号信噪比
B1238.03B4213.08
B2208.24B5388.42
B3209.20B6320.44
表3  VIMI前6个谱段信噪比计算结果
图1  天津港GF-5 VIMI 真彩色合成图(成像时间:2018?06?08 05:17:21,来源:中国资源卫星应用中心)
谱段编号清晰度谱段编号清晰度
B10.47B70.54
B20.61B80.3
B30.85B90.16
B40.91B100.21
B50.82B110.03
B60.86B120.01
表4  VIMI天津港清晰度计算结果
谱段编号信息量谱段编号信息量
B19.01B77.52
B29.62B86.12
B39.97B97.60
B49.83B108.31
B59.32B116.44
B69.09B125.71
表5  VIMI天津港信息量计算结果
地物类型经纬度区域成像时间景数
水体30° N、90° E附近青藏高原内陆湖2018.6.4~2018.9.34
冰雪80° N、30° W附近格陵兰岛2018.8.4~2018.8.106
表6  辐射不均一性计算数据源列表
谱段编号辐射不均一性谱段编号辐射不均一性
B10.80%B71.56%
B21.19%B81.48%
B31.38%B90.91%
B41.43%B101.02%
B50.90%B110.17%
B61.26%B120.43%
表7  VIMI辐射不均一性计算结果
卫星名称GF-5 VIMILandsat 8
谱段编号谱段范围/μm分辨率/m谱段范围/μm分辨率/m
B10.44~0.51

20

20

20

20

20

0.45~0.5230
B20.51~0.580.52~0.6030
B30.62~0.680.62~0.6830
B40.76~0.870.76~0.8630
B51.54~1.71.55~1.7530
B62.06~2.35202.08~2.3530
B73.45~3.9040--
B84.76~4.9640--
B98.05~8.4540--
B108.57~8.9340--
B1110.5~11.34010.6~11.19100
B1211.4~12.54011.5~12.5100
表8  GF-5 VIMI与Landsat8相关技术指标对比表[1,25]
图2  GF-5 VIMI与Landsat 8信噪比对比结果图(所有谱段编号以GF?5 VIMI为准)
图3  GF-5 VIMI与Landsat 8清晰度对比结果图(所有谱段编号以GF?5 VIMI为准)
图4  GF-5 VIMI与Landsat 8信息量对比结果图(所有谱段编号以GF?5VIMI为准)
1 Sun Yunzhu, Jiang Guangwei, Li Yunduan,et al. GF-5 Satellite: Overview and Application Prospects[J].Spacacraft Recovery & Remote Sensing,2018,39(3):1-13.
1 孙允珠,蒋光伟,李云端,等.“高分五号”卫星概况及应用前景展望[J].航天返回与遥感,2018,39(3):1-13
2 Sun Yunzhu, Jiang Guangwei, Li Yunduan,et al.Hyper-Spectral Observation Satellite and It's Application Prospects[J].Aerospace Shanghai,2017,34(3):1-13.
2 孙允珠,蒋光伟,李云端,等.高光谱观测卫星及应用前景[J],上海航天,2017,34(3):1-13
3 He Zhongxiang, Wang Mingfu,Yang Shihong, et al. Research on Objective Quality Assessment of Remote Sensing Image[J]. Journal of Engineering Graphics, 2011(6):47-52.
3 何中翔,王明富,杨世洪,等. 遥感图像客观质量评价方法研究[J]. 工程图学学报, 2011(6):47-52.
4 Bai Honggang,Wang Xiaorui. Research on Quantitave Relationship between Design Parameters of the Infrared Remote Sensor and NIIRS Scale[J], Electronic Science and Technology, 2010,23(4):1-3.
4 白宏刚,王晓蕊. 红外遥感器设计参数与NIIRS的定量关系研究[J]. 电子科技, 2010,23(4):1-3.
5 Shi Hongwei, Chen Shiping. A Remote Sensing Image Quality Standard Orienting to User's Mission Requirements -NIIRS[J]. Spacecraft Recovery & Remote Sensing,2003,24(3): 30-35.
5 时红伟,陈世平. 一种面向用户任务需求的遥感图像质量标准-NIIRS[J]. 航天返回与遥感, 2003,24(3): 30-35.
6 Liu Zhaojun,Zhou Feng,Man Yiyun,et al.Prediction and Evaluation Technology of Optical Sensor's Image Quality[J], Infrared and Laser Engineering, 2006, 35: 222-226.
6 刘兆军,周峰,满益云,等. 光学遥感器像质预估与评价技术研究[J].红外与激光工程, 2006,35:222-226.
7 Wang Zhanhong, Du Daosheng. Application of Fuzzy Synthetically Evaluated Method in Remote Sensing Imagery Products Quality Inspected[J]. Geomatics and Information Science of Wuhan University, 2005, 30(5): 412-416.
7 王占宏, 杜道生. 模糊综合评价法在数字遥感影像产品质量评价中的应用[J]. 武汉大学学报(信息科学版), 2005, 30(5): 412-416.
8 Wang Qinjun,Tian Qingjiu.Quality Evaluation of LISS3 Image from IRS-P6 Satellite[J]. Geography and Geo-Information Science, 2007,23(3): 11-14.
8 王钦军, 田庆久. IRS-P6卫星LISS3图像数据质量评价[J]. 地理与地理信息科学, 2007,23(3):11-14.
9 Zhang Xia,Zhang Bing,Zhao Yongchao,et al. Image Quality Assessment for the Infrared Multi-spectral Scanner of the Chinese-Brazil Earth Resources Satellite[J]. Journal of Image and Graphics, 2002,7(6):63-68.
9 张霞,张兵,赵永超, 等. 中巴地球资源一号卫星多光谱扫描图象质量评价[J]. 中国图象图形学报, 2002,7(6):63-68.
10 Ren H, Du C, Liu R,et al. Evaluation of Radiometric Performance for the Thermal Infrared Sensor Onboard Landsat 8[J]. Remote Sensing, 2014,6(12): 12776-12788.doi:10.3390/rs61212776.
doi: 10.3390/rs61212776
11 Ren H,Du C, Liu R, et al. Noise Evaluation of Early Images for Landsat 8 Operational Land Imager[J]. Optics Express, 2014, 22(22): 27270-27280.doi:10.1364/OE.22.027270.
doi: 10.1364/OE.22.027270
12 Morfitt R, Barsi J,Levy R,et al. Landsat 8 Operational Land Imager (OLI) Radiometric Performance On-Orbit[J]. Remote Sensing, 2015, 7(2): 2208-2237.doi:10.3390/rs70202208.
doi: 10.3390/rs70202208
13 Qin Bangyong, A Study on Quality Evaluation System and Methods of Hyperspectral Remote Sensing Data[D]. Beijing:University of China Academy of Science, 2014.
13 覃帮勇. 高光谱遥感数据质量评价体系及方法研究[D]. 北京: 中国科学院大学, 2014.
14 Zeng Caiyun,The Quality Assessment and Feature Analysis of Domestic High Resolution Satellite Images[D]. Chengdu:Chengdu University of Technology,2017.
14 曾彩云. 国产高分卫星影像质量评价及特征分析[D]. 成都: 成都理工大学, 2017.
15 Wu Zhaocong, Yang Fan, Zhang Yi, et al. Quality Evaluation of GF-1 and SPOT-7 Multi-spectral Image based on Land Surface Parameter Validation[J]. Journal of Image and Graphics, 2016, 21(11): 1551-1561.
15 巫兆聪, 杨帆, 张熠,等. 基于地表参数真实性的GF-1和SPOT-7多光谱影像质量评价[J]. 中国图象图形学报, 2016, 21(11): 1551-1561.
16 Hui Wen, Guo Qiang, Wu Qiong, et al. Image Quality Evaluation of FY-2G Meteorological Satellite[J]. Progress in Geophysics, 2016, 31(5): 1902-1910.
16 惠雯, 郭强, 吴琼, 等. FY-2G静止气象卫星遥感图像质量评价[J]. 地球物理学进展, 2016, 31(5): 1902-1910.
17 Wen Xiongfei, Chen Beiqing, Shen Zhaohong, et al. Image Quality Evaluation for ZY-102C Satellite P/MS Sensors and The Potential of Its Application in Water Conservancy[J]. Journal of Yangtze River Scientific Research Institute, 2012, 29(10): 118-121.
17 文雄飞, 陈蓓青, 申邵洪, 等. 资源一号02C卫星P/MS传感器数据质量评价及其在水利行业中的应用潜力分析[J]. 长江科学院院报, 2012, 29(10): 118-121.
18 Zhu Bo, Wang Xinhong, Tang Lingli, et al. Review on Methods for SNR Estimation of Optical Remote Sensing Imagery[J]. Remote Sensing Technology and Application, 2010,25(2):303-309.
18 朱博, 王新鸿, 唐伶俐,等. 光学遥感图像信噪比评估方法研究进展[J]. 遥感技术与应用, 2010,25(2): 303-309.
19 Ran Qiong,Chi Yaobin,Wang Zhiyong, et al. Image-based Noise Estimation of Beijing-1 Small Satellite[J]. Journal of Remote Sensing, 2009,13(3):554-558.
19 冉琼, 迟耀斌, 王智勇,等. 北京1号小卫星图像噪声评估[J]. 遥感学报, 2009,13(3):554-558.
20 Liu Jiangui,Zheng Lanfen, Tong Qingxi. Estimation of Signal to Noise Ratio of Remote Sensing Images[J]. Journal of Basic Science and Engineerin, 1999,7(4):360-365.
20 刘建贵, 郑兰芬, 童庆禧. 遥感图象信噪比的估算[J]. 应用基础与工程科学学报, 1999,7(4):360-365.
21 Gao Lianru, Zhang Bing, Zhang Xia,et al. Study on the Method for Estimating the Noise in Remote Sensing Images based on Local Standard Deviations[J]. Journal of Remote Sensing, 2007,11(2):201-208.
21 高连如, 张兵, 张霞,等. 基于局部标准差的遥感图像噪声评估方法研究[J]. 遥感学报, 2007,11(2):201-208.
22 Wang Hongnan, Zhong Wen, Wang Jing, et al. Research of Measurement for Digital Image Definition[J]. Journal of Image and Graphics, 2004,9(7): 64-67.
22 王鸿南, 钟文, 汪静,等. 图像清晰度评价方法研究[J]. 中国图象图形学报, 2004,9(7):64-67.
23 Wu Xing, Zhang Xia, Sun Xuejian, et al. Radiation Quality Evaluation of SPARK Hyperspectral Satellite Image[J]. Remote Sensing Technology and Application, 2018, 33(2): 233-240.
23 吴兴,张霞,孙雪剑,等.SPARK卫星高光谱数据辐射质量评价[J]. 遥感技术与应用, 2018, 33(2): 233-240.
24 Hu Yongfu, Zhang Yufeng. Analysis of Relative Radiometric Calibration Accuracy of Space Camera[J]. Spacecraft Recovery & Remote Sensing, 2007,28(4):54-57.
24 胡永富, 张宇烽. 空间相机相对辐射定标精度分析[J]. 航天返回与遥感, 2007,28(4):54-57.
25 Fan Bin, Chen Xu, Li Bicen, et al. Technical Innovation of Optical Remote Sensing Payloads Onboard GF-5 Satellite[J]. Infrared and Laser Engineering, 2017,46(1):8-14
25 范斌, 陈旭, 李碧岑, 等. "高分五号"卫星光学遥感载荷的技术创新[J]. 红外与激光工程, 2017, 46(1): 8-14.
[1] 王树果, 马春锋, 赵泽斌, 魏龙. 基于Sentinel-1及Landsat 8数据的黑河中游农田土壤水分估算[J]. 遥感技术与应用, 2020, 35(1): 13-22.
[2] 栾佳萍,张连翀,曾怡. 基于Landsat 8的全球精选遥感数据集汇聚方法[J]. 遥感技术与应用, 2019, 34(6): 1276-1285.
[3] 冯婵莹, 汪子豪, 郑成洋. 基于分层线性回归的MODIS反照率产品降尺度方法研究[J]. 遥感技术与应用, 2019, 34(3): 602-611.
[4] 李晓慧, 王宏, 李晓兵, 迟登凯, 汤曾伟, 韩重远. 基于多时相Landsat 8 OLI影像的农作物遥感分类研究[J]. 遥感技术与应用, 2019, 34(2): 389-397.
[5] 李军, 龚围, 辛晓洲, 高阳华. 重庆地表温度的遥感反演及其空间分异特征[J]. 遥感技术与应用, 2018, 33(5): 820-829.
[6] 汪子豪, 秦其明, 孙元亨.

基于BP神经网络的地表温度空间降尺度方法 [J]. 遥感技术与应用, 2018, 33(5): 793-802.

[7] 施佩荣,陈永富,刘华,吴云华. 基于分割评价函数的多尺度分割参数的选择[J]. 遥感技术与应用, 2018, 33(4): 628-637.
[8] 史新,周买春. 基于Landsat 8数据的3种地表温度反演算法在三河坝流域的对比分析[J]. 遥感技术与应用, 2018, 33(3): 465-475.
[9] 赵航,陈方, 张美美. 基于改进C-V模型的冰湖轮廓提取方法研究[J]. 遥感技术与应用, 2018, 33(1): 177-184.
[10] 何炳伟,赵伟,李爱农,冯文兰,谭剑波,雷光斌,南希. 基于Landsat 8遥感影像的新旧城区热环境特征对比研究-以成都市为例[J]. 遥感技术与应用, 2017, 32(6): 1141-1150.
[11] 张雅,尹小君,王伟强. 基于Landsat 8 OLI遥感影像的天山北坡草地地上生物量估算[J]. 遥感技术与应用, 2017, 32(6): 1012-1021.
[12] 王猛猛,何国金,张兆明,王桂周,尹然宇,龙腾飞. 基于Landsat 8 TIRS数据的大气水汽含量反演劈窗算法[J]. 遥感技术与应用, 2017, 32(1): 166-172.
[13] 赵伟,李爱农,张正健,边金虎,靳华安,尹高飞,南希,雷光斌. 基于Landsat8热红外遥感数据的山地地表温度地形效应研究[J]. 遥感技术与应用, 2016, 31(1): 63-73.
[14] 蒋大林,匡鸿海,曹晓峰,黄艺,李发荣. 基于Landsat 8的地表温度反演算法研究—以滇池流域为例[J]. 遥感技术与应用, 2015, 30(3): 448-454.
[15] 徐婷,曹林,佘光辉. 基于Landsat 8 OLI的特征变量优化提取及森林生物量反演[J]. 遥感技术与应用, 2015, 30(2): 226-234.