Please wait a minute...
img

官方微信

遥感技术与应用  2020, Vol. 35 Issue (2): 416-423    DOI: 10.11873/j.issn.1004-0323.2020.2.0416
遥感应用     
基于Sentinel-1A数据的天津地区PS-InSAR地面沉降监测与分析
卢旺达1,2(),韩春明1(),岳昔娟1,赵迎辉1,周格仪1
1.中国科学院遥感与数字地球研究所 航空遥感中心,北京 100094
2.中国科学院大学,北京 100049
Land Subsidence Monitoring in Tianjin with PS-InSAR Technique based on Sentinel -1 Data
Wangda Lu1,2(),Chunming Han1(),Xijuan Yue1,Yinghui Zhao1,Geyi Zhou1
1.Airborne Remote Sensing Center, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China
2.University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(6928 KB)   HTML
摘要:

为有效预防地面沉降带来的灾害,利用2015年4月~2018年2月天津地区的24景Sentinel-1A数据,进行了永久散射体干涉测量处理,并使用高精度轨道数据和TanDEM-X DEM修正残差相位,提取了3 a的地面沉降结果,结合土地利用类型、水文、地质和交通等数据,分析了多处沉降地区的特征和形成原因,最后和小基线集方法的监测结果进行对比分析。结果表明:近3 a来天津城区沉降治理效果显著,平均沉降速率在8 mm/a以内,郊区沉降仍然严重,沉降速率在50~70 mm/a,沉降最为严重的区域为武清区王庆坨镇,3 a累计沉降量超过200 mm,并且有和其他沉降漏斗连成片的趋势。地面沉降发生的区域与地下水漏斗形成的区域基本一致,且两种方法得到的累积形变量差值95%在5 mm以内,说明本研究结果可以为天津市地质灾害防治提供数据支撑和决策依据。

关键词: 地表形变地下水干涉测量永久散射体    
Abstract:

Land Subsidence is one of the most important geological hazards in many areas. In order to prevent disasters caused by land subsidence efficiently, 24 Sentinel-1A images covering area of Tianjin are choosed from 2015 to 2018. Based on Persistent Scatterers InSAR technique, the results of land subsidence for three years are extracted using the precise orbit data and TanDEM-X DEM and compared with the monitoring results of SBAS (Small Baseline Subset) method. Combined with land use types, hydrogeological and traffic data, the characteristics and formation reasons of several subsidence areas are analyzed. The experimental results show that: (1) In recent three years, the land subsidence in Tianjin urban area is relatively slow, with an average speed of less than 8 mm/a. However, suburban land subsidence is still serious with an average speed between 50 mm/a~70 mm/a. The most serious land subsidence area was Wangqingtuo Town in Wuqing district, the total land subsidence was over 200 mm. And there is a trend of connectivity in these subsidence areas. (2) Land subsidence and the falling of groundwater levels have a very high spatial correlation and the difference between the cumulative shape variables obtained by the two methods of SBAS and PSInSAR is less than 5 mm. The results of this study can provide data support for the government of Tianjin.

Key words: Land subsidence    Groundwater    Interferometry    Persistent scatterer
收稿日期: 2018-11-01 出版日期: 2020-07-10
ZTFLH:  TP79  
基金资助: 中国科学院战略性先导科技专项(A类)项目(XDA19030101)
通讯作者: 韩春明     E-mail: luwd@radi.ac.cn;hancm@radi.ac.cn
作者简介: 卢旺达(1993-),男,辽宁阜新人,硕士研究生,主要从事雷达干涉测量地表形变监测研究。E?mail: luwd@radi.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
卢旺达
韩春明
岳昔娟
赵迎辉
周格仪

引用本文:

卢旺达,韩春明,岳昔娟,赵迎辉,周格仪. 基于Sentinel-1A数据的天津地区PS-InSAR地面沉降监测与分析[J]. 遥感技术与应用, 2020, 35(2): 416-423.

Wangda Lu,Chunming Han,Xijuan Yue,Yinghui Zhao,Geyi Zhou. Land Subsidence Monitoring in Tianjin with PS-InSAR Technique based on Sentinel -1 Data. Remote Sensing Technology and Application, 2020, 35(2): 416-423.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2020.2.0416        http://www.rsta.ac.cn/CN/Y2020/V35/I2/416

图1  PS-InSAR算法流程图
图2  研究区域
卫星参数
入射角/°33.6
极化方式VV
幅宽/km250×170(地距向×方位向)
成像模式宽幅干涉模式
标称分辨率/m5×20(地距向×方位向)
实际像元大小/m2.3×14.1(斜距向×方位向)
重访周期/d12
表1  Sentinel 1卫星的参数
影像编号成像时间空间基线/m
12015-04-0847.335 9
22015-05-02137.977
32015-05-26-39.325 1
42016-01-09-92.200 6
52016-02-2685.637 8
62016-05-08-15.540 6
72016-06-01-24.045
82016-07-196.800 89
92016-09-2948.539 3
102016-10-2332.034 8
112016-11-28-66.825 2
122016-12-2273.019 4
132017-01-27-22.902 2
142017-03-0436.904 2
152017-04-0930.402 7
162017-05-15-45.216 7
172017-06-080.000 0
182017-07-14-62.347 5
192017-08-19-13.959 7
202017-09-24-14.087 1
212017-10-30-17.429 3
222017-12-05-54.201 5
232018-01-10128.882
242018-02-1527.402 3
表2  Sentinel 1数据集
图3  差分相位改正
图4  天津市2015~2018年地面沉降速率图
图5  研究区域沉降特征
图6  重点区域地面沉降速率及对应的土地利用类型
图7  京沪高铁天津段沉降监测速率图
图8  实验区SBAS-InSAR沉降速率图
图9  两种方法相同测量点处的累积沉降量差值统计图
1 Xie Rongan, Zhou Yuanhua, Hu Zheng. Application Research of Using SBAS to Monitor Ground Subsidence[J]. Bulletin of Surveying and Mapping, 2015(8):70-73.
1 谢荣安,周元华,胡争.短基线集技术在地表形变监测中的应用研究[J].测绘通报, 2015(8):70-73.
2 Jiang Yuan, Yang Yan, Wang Haigang, et al. Distribution Characteristics and Influence Factors of Land Subsidence in Beijing Area[J]. Shanghai Land & Resources, 2016,43(6):2216-2228.
2 姜媛,杨艳,王海刚,等.北京平原区地面沉降的控制与影响因素[J].上海国土资源,2016,43(6):2216-2228.
3 Ge Daqing. Research on Key Technologies of SAR Interferometry for Regional Land Subsidence Monitoring[D]. Beijing: China University of Geosciences (Beijing), 2013.
3 葛大庆.区域性地面沉降InSAR监测关键技术研究[D].北京:中国地质大学(北京), 2013.
4 Wu Wenhao. Research on Ground Subsidence by InSAR Time Series[J]. Bulletin of Surveying and Mapping,2014(11):11-15.
4 吴文豪. 利用雷达干涉时序分析方法研究地面沉降 [J]. 测绘通报, 2014(11):11-15.
5 Zhang Xuedong, Ge Daqing, Wu Lixin, et al. Study on Monitoring Land Subsidence in Mining City based on Coherent Target Small-baseline InSAR[J]. Journal of Coal, 2012, 37(10): 1606-1611.
5 张学东,葛大庆,吴立新,等. 基于相干目标短基线InSAR的矿业城市地面沉降监测研究 [J].煤炭学报, 2012, 37(10): 1606-1611.
6 Qiu Zhiwei, Yue Jianping, Wang Xueqin, et al. Research on Urban Surface Subsidence Monitoring based on SBAS[J].Bulletin of Surveying and Mapping,2016(7):25-29.
6 邱志伟, 岳建平,汪学琴,等.基于短基线集技术的城市地表沉降监测研究[J].测绘通报, 2016(7):25-29.
7 Luo Wenlin, Hou Wei, Han Xuan,et al. Status and Prediction of Land Subsidence in the Eastern Part of Beijing[J]. Journal of Hunan University of Science & Technology(Natural Science Edition),2015,30(2):52-59.
7 罗文林, 侯伟,韩煊,等.北京东部区域地面沉降现状及其发展趋势预测[J]. 湖南科技大学学报(自然科学版), 2015,30(2):52-59.
8 Zhang Youyou. Application of Ground Subsidence Monitoring in Tianjin Suburb based on Multi Temporal InSAR[J].Urban Geotechnical Investigation and Surveying,2016(6):65-69.
8 张又又.基于时序InSAR技术的天津郊区地面沉降监测应用[J].城市勘测,2016(6):65-69.
9 Ferretti A, Prati C, Rocca F. Permanent Scatterers in SAR Interferometry [J]. IEEE Transactions on Geoscience & Remote Sensing, 2001, 39(1): 8-20.
10 Jiwei Chan, Zeng Qiming, Jiao Jian, et al. SBAS Time Series Analysis Technique based on Sentinel-1A TOPS SAR Images:A Case Study of Yellow River[J]. Remote Sensing for Land and Resources, 2017,29(4):82-87.
10 陈继伟,曾琪明,焦健,等.Sentinel-1A卫星TOPS模式数据的SBAS时序分析方法——以黄河三角洲地区为例[J].国土资源遥感,2017,29(4):82-87.
11 Xiaowen Lü, Song Li, Shao Xing, et al. The Suggestion and Application of Land Subsidence Monitoring in Tianjin[J]. Shanghai Land and Resources,2017,38(2):26-30.
11 吕潇文,宋利,邵兴,等.天津市地面沉降监测技术应用及发展建议[J].上海国土资源, 2017,38(2):26-30.
12 Wang Miao, Lu Wang, Yi Changrong. Study on Land Subsidence Preventing Zonation in Tianjin[J]. Shanxi Architecture. 2015,41(11):56-57.
12 王淼,陆阳,易长荣.天津市地面沉降防治区划的研究[J].山西建筑,2015,41(11):56-57.
13 Jin Zonghuang, Ding Shijun, Li Tao, et al. On Monitoring Tianjin Area Subsidence Funnel with Persistent Scatterers Interferometry[J].Journal of Geodesy and Geodynamics,2013,33(2):23-26.
13 金宗煌,丁士俊,李陶,等.天津地区沉降漏斗的监测研究[J].大地测量与地球动力学,2013,33(2):23-26.
14 Zhang Xiaobo, Zhao Xuesheng, Ge Daqing, et al. Subsidence Monitoring of Huainan Coal Mine from Sentinel TOPS Images based on Stacking Technique[J], Remote Sensing for Land and Resources, 2018,30(4):200-205.
14 张晓博,赵学胜,葛大庆,等.基于Sentinel TOPS模式Stacking技术监测淮南矿区沉降[J].国土资源遥感,2018,30(4):200-205.
15 Wu Wenhao, Zhou Zhiwei, Li Tao,al et, Study of Sentinel- A1 TOPS Mode Co-registration[J].Acta Geodaetica et Cartographica Sinica, 2017,46(9):1156-1164.
15 吴文豪,周志伟,李陶,等.精密轨道支持下的哨兵卫星TOPS模式干涉处理[J].测绘学报,2017,46(9):1156-1164.
16 Yi Huiguo, Zhang Lei, Li Ning,al et, Method of Detecting Persistent Scatterers According to Standard Points[J]. Journal of Geodesy and Geodynamics,2015,35(4):684-688.
16 易辉国,张磊,李宁,等.参照标准点探测PS法[J].大地测量与地球动力学,2015,35(4):684-688.
17 Li Guangyu, Zhang Rui, Liu Guoxiang,et al. Land Subsidence Detection and Analysis over Beijing-Tianjin-Hebei Area based on Sentinel-1A TS-DInSAR[J]. Journal of Remote Sensing, 2018,22(4):633-646.
17 李广宇,张瑞,刘国祥,等.Sentinel-1A TS-DInSAR京津冀地区沉降监测与分析[J].遥感学报,2018,22(4):633-646.
18 Gao Junjie. Land Subsidence Mechanism and Countermeasures in Central Tianjin[D]. Beijing:China University of Geosciences (Beijing), 2017.
18 高俊杰.天津市中心城区地面沉降机理及防治对策[D].北京:中国地质大学(北京), 2017.
19 Yi Changrong. Latest Progress of Land Subsidence Control in Tianjin[J]. Haihe Water Resources,2017(S1):42-43.
19 易长荣.天津市控制地面沉降工作最新进展[J].海河水利,2017(增刊1):42-43.
20 Li Jiaqi, Li Xinjie, Liu Jie.Analysis on Land Subsidence Situation and Formation Reasons of Negative Land form Region in Tianjin.[J].Jiangsu Science & Technology Information,2017(19):68-70.
20 李佳琦, 李欣杰,刘杰.天津市低海拔地区地面沉降现状及成因分析[J].江苏科技信息,2017(19):68-70.
21 Lei Kunchao, Chen Beibei, Gong Huili, et al. Detection of Land Subsidence in Tianjin based on PS-InSAR Technology[J]. Hydrogeology and Engineering Geology,2013,40(6):106-111.
21 雷坤超,陈蓓蓓,宫辉力,等.基于PS-InSAR技术的天津地面沉降研究[J].水文地质工程地质,2013,40(6):106-111.
22 Wang Tao, Gu Lijuan, Zhan Huaming,et al. Research on Ground Subsidence Monitoring of Tianjin Area based on D-InSAR Technique[J].Science of Surveying and Mapping,2013,38(6):49-51.
22 王涛,顾丽娟,詹华明,等.基于D-InSAR技术的天津地区地面沉降监测[J].测绘科学,2013,38(6):49-51.
23 Dong Kegang, Wang Wei, Yu Qiang, et al. Ratio of Soil Loss to Groundwater-exploitation in the Tianjin Land Subsidence Area[J]. Hydrogeology and Engineering Geology,2008, 35(5): 76-80.
23 董克刚, 王威,于强,等.天津地面沉降区土水比论述[J].水文地质工程地质, 2008, 35(5): 76-80.
24 Zhang Wanwan, Ke Yinghai, Deng Zeng,et al. Vertical Deformation Monitoring along Beijing-Tianjin Higlrspeed Railway(Beijing section) based on Multi-platform SAR Data[J].China Sciencepaper, 2018,13(2):235-240.
24 张婉婉,柯樱海,邓曾,等.基于多源SAR数据的京津高铁北京段垂向形变监测[J].中国科技论文,2018,13(2):235-240.
25 Zhang Jinzhi, Huang Haijun, Bi Haibo,et al.Monitoring Ground Subsidence in the Modern Yellow River Delta based on SBAS Time-series Analysis[J].Geomatics and Information Science of Wuhan University, 2016,41(2):242-248.
25 张金芝,黄海军,毕海波,等.SBAS时序分析技术监测现代黄河三角洲地面沉降[J].武汉大学学报(信息科学版),2016,41(2):242-248.
26 Luo Cheng. The Application of SBAS-InSAR Technology in Xi'an Land Subsidence Monitoring[D]. Xi'an: Chang’an University,2012.
26 罗铖. 基于SBAS_InSAR的西安地表沉降监测[D].西安:长安大学,2012.
27 Xu Wenbin, Li Zhiwei, Ding Xiaoli, et al. Application of Small Baseline Subsets D-InSAR Technology to Estimate the Time Series Land Deformation[J]. Chinese Journal of Geophysics, 2012,55(2):452-461.
27 许文斌,李志伟,丁晓利,等.利用InSAR短基线技术估计洛杉矶地区的地表时序形变和含水层参数[J].地球物理学报,2012,55(2):452-461.
[1] 麻源源,左小清,麻卫峰. 基于PS-InSAR的天津地区沉降监测及分析[J]. 遥感技术与应用, 2019, 34(6): 1324-1331.
[2] 冯贵平,宋清涛,蒋兴伟. 卫星重力监测全球地下水储量变化及其特征[J]. 遥感技术与应用, 2019, 34(4): 822-828.
[3] 黄静,王芳,张运. 基于PSI技术的芜湖市地面沉降时空特征分析[J]. 遥感技术与应用, 2019, 34(4): 829-838.
[4] 李丹, 杨斌, 陈财. 基于Sentinel-1A数据反演九寨沟地震地表形变场[J]. 遥感技术与应用, 2018, 33(6): 1141-1148.
[5] 高胜,曾琪明,焦健,童庆禧. 永久散射体雷达干涉研究综述[J]. 遥感技术与应用, 2016, 31(1): 86-94.
[6] 朱叶飞,朱锦旗,詹雅婷,崔艳梅. 基于小基线InSAR技术监测九台营城矿区2012年地表形变[J]. 遥感技术与应用, 2015, 30(2): 370-375.
[7] 雷坤超,贾三满,陈蓓蓓,罗勇,韩征. 基于PS-InSAR技术的廊坊市地面沉降监测研究[J]. 遥感技术与应用, 2013, 28(6): 1114-1119.
[8] 张薇,靳国旺,向茂生. 大区域稀疏控制条件下的多条带InSAR数据的联合定标研究[J]. 遥感技术与应用, 2013, 28(1): 18-26.
[9] 陶利,张红,王超,汤益先. 新型多基线DInSAR地表形变监测技术研究动态[J]. 遥感技术与应用, 2012, 27(6): 805-811.
[10] 刘金龙,郭华东,宋 瑞,Zbigniew Perski,刘 广,赵 峰,范景辉,闫世勇,阮智星. 多模式雷达在矿区沉降监测中的应用研究[J]. 遥感技术与应用, 2012, 27(4): 584-590.
[11] 吴宏安,张红,王超,汤益先. 沿海地区不同空间尺度的典型地物相干性研究[J]. 遥感技术与应用, 2009, 24(1): 109-113.
[12] 张薇,向茂生,吴一戎. 基于三维重建模型的机载双天线干涉SAR外定标方法及实现[J]. 遥感技术与应用, 2009, 24(1): 82-87.
[13] 张薇,向茂生,吴一戎. 基于正侧视模型的机载双天线干涉SAR外定标方法[J]. 遥感技术与应用, 2008, 23(3): 346-350.
[14] 刘 广,郭华东,范景辉. 基于外部DEM的InSAR图像配准方法研究[J]. 遥感技术与应用, 2008, 23(1): 72-76.
[15] 黄其欢,何秀凤. SAR影像配准中控制点粗差剔除方法研究[J]. 遥感技术与应用, 2007, 22(1): 75-78.