Please wait a minute...
img

官方微信

遥感技术与应用  2020, Vol. 35 Issue (2): 458-468    DOI: 10.11873/j.issn.1004-0323.2020.2.0458
遥感应用     
基于相对光谱变量的无人机遥感水稻估产及产量制图
王飞龙1(),王福民2(),胡景辉2,谢莉莉2,谢京凯1
1.浙江大学建筑工程学院,浙江 杭州 310058
2.浙江大学环境与资源学院,浙江 杭州 310058
Estimating and Mapping Rice Yield Using UAV-Hyperspectral Imager based Relative Spectral Variates
Feilong Wang1(),Fumin Wang2(),Jinghui Hu2,Lili Xie2,Jingkai Xie1
1.Institute of Hydrology and Water Resources, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2.Institute of Remote Sensing and Information Technology Application, College of Environment and Resource Science, Zhejiang University, Hangzhou 310058, China
 全文: PDF(4029 KB)   HTML
摘要:

及时准确地监测农作物产量信息对国家和区域的粮食生产、贸易及粮食安全预警具有重要意义。当前卫星遥感估产由于高时空分辨率难以同时满足、波段数量少等原因限制估产精度进一步提高,无人机成像高光谱技术以其高时空分辨率、丰富的波段数量和图谱结合的遥感影像等优势被广泛地应用到现代智慧农业与精准农业,使高精度的农作物估产成为了可能。常规无人机估产方法使用的不同时期植被指数在获取时具有不同的光照条件、大气条件和背景,这些外界条件的差异将会引起不同时期植被指数的误差,进而影响估产精度。针对该问题,提出“相对光谱变量”和“相对产量”的概念开展多时期相对变量水稻遥感估产。首先将高光谱成像仪获取的波段进行一对一的组合建立相对归一化光谱指数RNDSI集,并确定水稻不同生育期的最优RNDSI及其构成波段;然后建立不同生育期组合的水稻估产最优模型并做相应的验证。结果显示:使用分蘖期RNDSI[784,635]、拔节期RNDSI[807,744]、孕穗期RNDSI[784,712]和抽穗期RNDSI[816,736]组成的多元线性回归模型是多生育期估产的最优模型,R2和RMSE分别为0.74和248.97 kg/hm2,并对此结果进行验证,估产平均相对误差绝对值达到了4.31%,结果表明相对植被指数和相对产量的水稻遥感估产方法可较好地应用于像素级的水稻遥感估产。基于该模型绘制了水稻的田间产量分布图,可更加直观地表现不同区域的产量并进行精准地田间管理。关 键 词:无人机;成像高光谱;相对光谱变量;水稻;估产;空间分布

关键词: 无人机成像高光谱相对光谱变量水稻估产空间分布    
Abstract:

Crop yield is important for national and regional food production, food trade and food security. Traditional yield estimation by satellite remote sensing is limited by many factors such as spatiotemporal resolution and number of bands. UAV imaging hyperspectral technology has been widely applied to modern intelligent agriculture and precision agriculture with its advantages of high spatial and temporal resolution, rich band number and the combination of image and spectrum It is possible to estimate crop yield accurately. The multi-temporal vegetation indices for yield estimation are obtained with different illumination conditions, atmospheric conditions and background values, the differences in these external conditions may result in errors in vegetation indices. Therefore, using these multi-temporal vegetation indices which containing these external conditions for yield estimation is likely to cause errors. To address this problem, this study proposes the concept of “relative spectral variables” and “relative yield” to estimate rice yield using multi- temporal relative variables. Firstly, the bands obtained from hyperspectral imager are combined to establish the Relative Normalized Difference Spectral Index(RNDSI) and the optimal RNDSI are selected for different growth stages. Then, the optimal models of rice yield estimation with different growth stage combinations are determined and validated. The results shows that multiple linear regression model consisting of tillering stage RNDSI[784, 635], jointing stage RNDSI[807, 744], booting stage RNDSI[784, 712] and heading stage RNDSI[816, 736] is the optimal models for rice yield estimation with R2 of 0.74 and RMSE of 248.97 kg/ha. This model is validated and the result is acceptable with average relative error of 4.31%. In conclusions, the relative vegetation index and relative yield can be applied to the pixel-level yield estimation by remote sensing. Besides, the rice yield distribution map is drawn based on the model, which represents the differences of rice yield at different filed positions. The map may be used to carry out precise field management.

Key words: UAV    Imagery hyperspectral    Relative spectral variable    Rice    Yield estimation    Spatial distribution
收稿日期: 2018-10-15 出版日期: 2020-07-10
ZTFLH:  TP79  
基金资助: 国家重点研发计划(2016YFD0300601);国家自然科学基金项目(41871328);浙江省微波目标特性测量与遥感重点实验室开放基金(2018KF02)
通讯作者: 王福民     E-mail: wangfeilong@zju.edu.cn;wfm@zju.edu.cn
作者简介: 王飞龙(1994-),男,河南洛阳人,硕士研究生,主要从事水文与水资源、遥感应用方面的研究。E?mail:wangfeilong@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王飞龙
王福民
胡景辉
谢莉莉
谢京凯

引用本文:

王飞龙,王福民,胡景辉,谢莉莉,谢京凯. 基于相对光谱变量的无人机遥感水稻估产及产量制图[J]. 遥感技术与应用, 2020, 35(2): 458-468.

Feilong Wang,Fumin Wang,Jinghui Hu,Lili Xie,Jingkai Xie. Estimating and Mapping Rice Yield Using UAV-Hyperspectral Imager based Relative Spectral Variates. Remote Sensing Technology and Application, 2020, 35(2): 458-468.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2020.2.0458        http://www.rsta.ac.cn/CN/Y2020/V35/I2/458

图1  实验田位置
图2  研究区实验设计信息
图3  无人机高光谱平台
图4  无人机高光谱平台获取的高光谱数据立方体
图5  不同波段组合的相对光谱指数RNDSI与相对产量相关系数图
时间水稻生育期RNDSI最优组合波段
20170728分蘖期635、 784
20170823拔节期744、 807
20170908孕穗期712、 784
20170919抽穗期736、 816
20171003灌浆期740、 816
20171024蜡熟期748、 792
表1  水稻不同生育期RNDSI的最佳波段组合
图6  最佳RNDSI和相对产量的相关系数随生育期变化特征
生育期拟合方程R2RMSE(kg/hm2)
分蘖期(Tillering Stage)TSy=-0.61+1.59x10.55329.19
拔节期(Jointing Stage)JSy=0.48+0.50x20.58317.65
孕穗期(Booting Stage)BSy=-0.37+1.36x30.61305.51
抽穗期(Heading Stage)HSy=0.40+0.56x40.57323.15
灌浆期(Filling Stage)FSy=0.55+0.43x50.51344.28
蜡熟期(Ripening Stage)RSy=0.63+0.35x60.47358.86
表2  单一生育期估产模型
生育期组合拟合方程R2RMSE(kg/hm2)
TS,JSy=-0.23+0.89x1+0.31x20.68279.48
TS,BSy=-0.74+0.82x1+0.89x30.69273.09
TS,HSy=-0.35+0.95x1+0.36x40.69273.63
TS,FSy=-0.32+1.05x1+0.25x50.66287.10
TS,RSy=-0.36+1.13x1+0.21x60.67284.11
JS,BSy=-0.11+0.26x2+0.83x30.68277.16
JS,HSy=0.34+0.30x2+0.32x40.68278.40
JS,FSy=0.46+0.35x2+0.17x50.61307.51
JS,RSy=0.47+0.37x2+0.13x60.61306.99
BS,HSy=-0.16+0.87x3+0.27x40.66286.15
BS,FSy=-0.18+1.01x3+0.15x50.64295.91
BS,RSy=-0.19+1.03x3+0.14x60.65290.84
HS,HSy=0.41+0.40x4+0.15x50.59316.73
HS,RSy=0.40+0.40x4+0.15x60.61306.01
FS,RSy=0.54+0.28x5+0.16x60.55330.61
表3  两个生育期组合估产模型
生育期组合拟合方程R2RMSE(kg/hm2)
TS, JS, BSy=-0.47+0.64x1+0.19x2+0.62x30.72258.34
TS, JS, HSy=-0.18+0.69x1+0.20x2+0.25x40.73255.05
TS, JS, FSy=-0.20+0.84x1+0.22x2+0.12x50.69273.39
TS, JS, RSy=-0.21+0.87x1+0.21x2+0.12x60.70269.67
TS, BS, HSy=-0.53+0.74x1+0.55x3+0.21x40.72259.54
TS, BS, FSy=-0.57+0.77x1+0.67x3+0.11x50.71267.29
TS, BS, RSy=-0.56+0.77x1+0.65x3+0.12x60.72261.17
TS, HS, FSy=-0.31+0.92x1+0.28x4+0.075x50.70271.85
TS, HS, RSy=-0.27+0.88x1+0.25x4+0.11x60.71263.01
TS, HS, RSy=-0.29+1.00x1+0.14x5+0.13x60.68276.86
JS, BS, HSy=0.0070+0.22x2+0.54x3+0.20x40.71265.77
JS, BS, FSy=-0.098+0.25x2+0.81x3+0.020x50.68277.02
JS, BS, RSy=-0.072+0.22x2+0.77x3+0.060x60.69274.76
JS, HS, FSy=0.32+0.35x2+0.40x4-0.11x50.69275.64
JS, HS, RSy=0.35+0.28x2+0.30x4+0.040x60.68277.45
JS, FS, RSy=0.46+0.31x2+0.11x5+0.090x60.62303.37
BS, HS, FSy=-0.14+0.84x3+0.24x4+0.030x50.66285.89
BS, HS, RSy=-0.084+0.75x3+0.21x4+0.092x60.68279.96
BS, FS, RSy=-0.14+0.94x3+0.071x5+0.11x60.65289.28
HS, FS, RSy=0.41+0.38x4+0.039x5+0.14x60.61305.69
表4  3个生育期组合估产模型
生育期组合拟合方程R2RMSE(kg/hm2)
TS, JS, BS, HSy=-0.34+0.59x1+0.16x2+0.37x3+0.18x40.74248.97
TS, JS, BS, FSy=-0.45+0.64x1+0.17x2+0.58x3+0.028x50.73258.07
TS, JS, BS, RSy=-0.43+0.67x1+0.14x2+0.54x3+0.072x60.73254.74
TS, JS, HS, FSy=-0.18+0.67x1+0.24x2+0.32x4-0.089x50.74253.26
TS, JS, HS, RSy=-0.18+0.70x1+0.17x2+0.22x4+0.053x60.74253.23
TS, JS, FS, RSy=-0.21+0.85x1+0.18x2+0.064x5+0.094x60.70268.31
TS, BS, HS, FSy=-0.52+0.73x1+0.54x3+0.20x4+0.013x50.72259.49
TS, BS, HS, RSy=-0.45+0.72x1+0.45x3+0.16x4+0.084x60.73253.93
TS, BS, FS, RSy=-0.53+0.76x1+0.60x3+0.037x5+0.10x60.72260.69
TS, HS, FS, RSy=-0.29+0.89x1+0.27x4-0.017x5+0.12x60.71262.94
JS, BS, HS, FSy=-0.040+0.28x2+0.58x3+0.30x4-0.14x50.72261.31
JS, BS, HS, RSy=0.017+0.21x2+0.53x3+0.19x4+0.025x60.71265.37
JS, BS, FS, RSy=-0.080+0.22x2+0.79x3-0.014x5+0.064x60.69274.70
JS, HS, FS, RSy=0.32+0.33x2+0.39x4-0.15x5+0.060x60.69273.32
BS, HS, FS, RSy=-0.10+0.77x3+0.24x4-0.043x5+0.10x60.68279.54
表5  4个生育期组合估产模型
生育期组合拟合方程R2RMSE(kg/hm2)
TS, JS, BS, HS, FSy=-0.36+0.57x1+0.21x2+0.41x3+0.25x4-0.11x50.75246.05
TS, JS, BS, HS, RSy=-0.33+0.61x1+0.13x2+0.35x3+0.16x4+0.041x60.75247.84
TS, JS, BS, FS, RSy=-0.44+0.66x1+0.14x2+0.55x3-0.013x5+0.075x60.73254.68
TS, JS, HS, FS, RSy=-0.19+0.69x1+0.21x2+0.30x4-0.12x5+0.073x60.74249.96
TS, BS, HS, FS, RSy=-0.48+0.73x1+0.48x3+0.20x4-0.057x5+0.099x60.74253.11
JS, BS, HS, FS, RSy=-0.028+0.26x2+0.56x3+0.29x4-0.17x5+0.053x60.72259.68
表6  5个生育期组合估产模型
模型R2RMSE(kg/hm2)F是否达到0.01显著水平
y=-0.37+1.36x30.61305.5197.39
y=-0.74+0.82x1+0.89x30.69273.0967.49
y=-0.18+0.69x1+0.20x2+0.25x40.73255.0553.60
y=-0.34+0.59x1+0.16x2+0.37x3+0.18x40.74248.9742.19
y=-0.36+0.57x1+0.21x2+0.41x3+0.25x4-0.11x50.75246.0534.24
y=-0.35+0.58x1+0.18x2+0.39x3+0.24x4-0.14x5+0.064x60.76243.4928.82
表7  模型评估参数
图7  模型验证实测产量与预测产量对比
图8  研究区水稻产量空间分布图
1 National Bureau of Statistics of the People's Republic of China. Main Data Bulletin of the Sixth National Population Census of China in 2010 Source[J]. Chinese Journal of Family Planning, 2011, 54(8):511-512.
1 中华人民共和国国家统计局. 2010年第六次全国人口普查主要数据公报(第1号)[J]. 中国计划生育学杂志, 2011, 54(8):511-512.
2 Huang J, Wang X, Li X, et al. Remotely Sensed Rice Yield Prediction Using Multi-temporal NDVI Data Derived from NOAA's-AVHRR[J]. PloS one, 2013, 8(8):e70816. doi:10.1371/Journal.pone.0070816.
doi: 10.1371/Journal.pone.0070816
3 National Bureau of Statistics of the People's Republic of China. China Statistical Yearbook 2015[M]. Beijing: China Statistics Press, 2016.
3 中华人民共和国国家统计局. 中国统计年鉴2015[M]. 北京: 中国统计出版社, 2016.
4 Chen Jingsong, Huang Jianxi, Lin Hui, et al. Rice Yield Estimation by Assimilation Remote Sensing into Crop Growth Model[J]. Scientia Sinica Informationis, 2010, 40(S1): 173-183.
4 陈劲松, 黄健熙, 林珲, 等. 基于遥感信息和作物生长模型同化的水稻估产方法研究[J]. 中国科学: 信息科学, 2010, 40(增刊1): 173-183.
5 Chen Zhongxin, Ren Jianqiang, Tang Huajun,et al. 2016. Progress and Perspectives on Agricultural Remote Sensing Research and Applications in China[J]. Journal of Remote Sensing, 2016,20(5): 748–767.
5 陈仲新, 任建强, 唐华俊,等. 农业遥感研究应用进展与展望[J]. 遥感学报, 2016, 20(5):748-767.
6 Turner D, Lucieer A, Watson C. An Automated Technique for Generating Georectified Mosaics from Ultra-high Resolution Unmanned Aerial Vehicle (UAV) Imagery, based on Structure from Motion (SfM) Point Clouds[J]. Remote sensing, 2012, 4(5): 1392-1410.
7 Gao Lin, Yang Guijun, Yu Haiyang, et al. Retrieving Winter Wheat Leaf Area Index based on Unmanned Aerial Vehicle Hyperspectral Remoter Sensing[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(22): 113-120.
7 高林, 杨贵军, 于海洋, 等. 基于无人机高光谱遥感的冬小麦叶面积指数反演[J]. 农业工程学报, 2016, 32(22):113-120.
8 Zhao Xiaoqing, Yang Guijun, Liu Jiangang, et al. Estimation of Soybean Breeding Yield based on Optimization of Spatial Scale of UAV Hyperspectral Image[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(1): 110-116.
8 赵晓庆, 杨贵军, 刘建刚, 等. 基于无人机载高光谱空间尺度优化的大豆育种产量估算[J]. 农业工程学报, 2017, 33(1):110-116.
9 Yue J, Yang G, Li C, et al. Estimation of Winter Wheat Above-ground Biomass Using Unmanned Aerial Vehicle-based Snapshot Hyperspectral Sensor and Crop Height Improved Models[J]. Remote Sensing, 2017, 9(7): 1-19. doi:10.33901rs9070708.
doi: 10.33901rs9070708
10 Calderón R, Navas-Cortés J A, Lucena C, et al. High-resolution Airborne Hyperspectral and Thermal Imagery for Early Detection of Verticillium Wilt of Olive Using Fluorescence, Temperature and Narrow-band Spectral Indices[J]. Remote Sensing of Environment, 2013, 139: 231-245.
11 Hall F G, Strebel D E, Nickeson J E, et al. Radiometric Rectification: Toward a Common Radiometric Response Among Multidate, Multisensor Images[J]. Remote Sensing of Environment, 1991, 35(1): 11-27.
12 Yuan D, Elvidge C D. Comparison of Relative Radiometric Normalization Techniques[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1996, 51(3): 117-126.
13 de Carvalho O A, Guimarães R F, Silva N C, et al. Radiometric Normalization of Temporal Images Combining Automatic Detection of Pseudo-invariant Features from the Distance and Similarity Spectral Measures, Density Scatterplot Analysis, and Robust Regression[J]. Remote Sensing, 2013, 5(6): 2763-2794.
14 Du Y, Teillet P M, Cihlar J. Radiometric Normalization of Multitemporal High-resolution Satellite Images with Quality Control for Land Cover Change Detection[J]. Remote Sensing of Environment, 2002, 82(1): 123-134.
15 Zhu Wanxue, Li Shiji, Zhang Xubo, et al. Estimation of Winter Wheat Yield Using Optimal Vegetation Indices from Unmanned Aerial Vehicle Remote Sensing[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(11): 78-86.
15 朱婉雪, 李仕冀, 张旭博,等. 基于无人机遥感植被指数优选的田块尺度冬小麦估产[J]. 农业工程学报, 2018, 34(11):78-86.
16 Ouyang Ling, Mao Dehua, Wang Zongming, et al. Analysis Crops Planting Structure and Yield based on GF-1 and Landsat 8 OLI Images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(11): 147-156.
16 欧阳玲, 毛德华, 王宗明,等. 基于GF-1与Landsat 8 OLI影像的作物种植结构与产量分析[J]. 农业工程学报, 2017, 33(11):147-156.
17 Liu Huanjun, Meng Linghua, Zhang Xinle, et al. Estimation Model of Cotton Yield with Time Series Landsat Images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(17): 215-220.
17 刘焕军, 孟令华, 张新乐, 等. 基于时间序列 Landsat 影像的棉花估产模型[J]. 农业工程学报, 2015, 31(17):215-220.
18 Ren Jianqing, Chen Zhongxin, Zhou Qingbo, et al. MODIS Vegetation Index Data Used for Estimating Corn Yield in USA[J]. Journal of Remote Sensing, 2015, 19(4): 568-577.
18 任建强, 陈仲新, 周清波,等. MODIS 植被指数的美国玉米单产遥感估测[J]. 遥感学报, 2015, 19(4): 568-577.
19 Liu Jiaodi, Cao Weibin, Li Hua, et al. The Research of Cotton Yield Estimation base on Vegetation Index Using Remote Sensing in Xingjian[J]. Journal of Shihezi University (Natural Science Edition), 2011, 29(2): 153-157.
19 刘姣娣, 曹卫彬, 李华, 等. 基于植被指数的新疆棉花遥感估产模型研究[J]. 石河子大学学报(自然科学版), 2011, 29(2): 153-157.
20 Siyal A A, Dempewolf J, Becker-Reshef I. Rice Yield Estimation Using Landsat ETM+ Data[J]. Journal of Applied Remote Sensing, 2015, 9(1): 095986. doi:10.1117/1.JRS.9.095986.
doi: 10.1117/1.JRS.9.095986
21 Tucker C J, Holben B N, Elgin Jr J H, et al. Relationship of Spectral Data to Grain Yield Variation[J]. Photogrammetric Engineering and Remote Sensing, 1980, 46(5): 657-666.
22 Pei Haojie, Feng Haikuan, Li Changchun, et al. Remote Sensing Monitoring of Winter Wheat Growth with UAV based on Comprehensive Index[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(20): 74-82.
22 裴浩杰, 冯海宽, 李长春, 等. 基于综合指标的冬小麦长势无人机遥感监测[J]. 农业工程学报, 2017, 33(20): 74-82.
23 Du M, Noguchi N. Monitoring of Wheat Growth Status and Mapping of Wheat Yield’s Within-field Spatial Variations Using Color Images Acquired from UAV-camera System[J]. Remote Sensing, 2017, 9(3): 289. doi:10.3390/rs9030289.
doi: 10.3390/rs9030289
24 Luna I, Lobo A. Mapping Crop Planting Quality in Sugarcane from UAV Imagery: A Pilot Study in Nicaragua[J]. Remote Sensing, 2016, 8(6): 500. doi:10.3390/rs8060500.
doi: 10.3390/rs8060500
25 Kim M, Ko J, Jeong S, et al. Monitoring Canopy Growth and Grain Yield of Paddy Rice in South Korea by Using the GRAMI Model and High Spatial Resolution Imagery[J]. GIScience & Remote Sensing, 2017, 54(4): 534-551.
26 Guan K, Li Z, Rao L N, et al. Mapping Paddy Rice Area and Yields over Thai Binh Province in Viet Nam from MODIS, Landsat, and ALOS-2/PALSAR-2[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(7): 2238-2252.
27 Matsushita B, Yang W, Chen J, et al. Sensitivity of the Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI) to Topographic Effects: A Case Study in High-density Cypress Forest[J]. Sensors, 2007, 7(11): 2636-2651.
28 Wang Zhengxing, Liu Chuang, Huete Alfredo. From AVHRR-NDVI to MODIS-EVI: Advances in Vegetation Index Research[J]. Acta Ecologica Sinica, 2003, 23(5): 979-987.
28 王正兴, 刘闯, Alfredo Huete. 植被指数研究进展: 从 AVHRR—NDVI 到 MODIS—EVI[J]. 生态学报, 2003, 23(5): 979-987.
29 Garroutte E L, Hansen A J, Lawrence R L. Using NDVI and EVI to Map Spatiotemporal Variation in the Biomass and Quality of Forage for Migratory Elk in the Greater Yellowstone Ecosystem[J]. Remote Sensing, 2016, 8(5): 404. doi:10.3390/rs8050404.
doi: 10.3390/rs8050404
30 Wang Z, Zhang X, Liu L, et al. Evaluating the Effects of Nitrogen Deposition on Rice Ecosystems Across China[J]. Agriculture, Ecosystems & Environment, 2019,206617:1-11. doi:10.1016/j.agee.2019.106617.
doi: 10.1016/j.agee.2019.106617
31 Li X, Wang Y. Prospects on Future Developments of Quantitative Remote Sensing[J]. Acta Geographica Sinica, 2013, 68(9): 1163-1169.
32 Tian Y, Woodcock C E, Wang Y, et al. Multiscale Analysis and Validation of the MODIS LAI Product: I. Uncertainty Assessment[J]. Remote Sensing of Environment, 2002, 83(3): 414-430.
33 Zhou X, Zheng H B, Xu X Q, et al. Predicting Grain Yield in Rice Using Multi-temporal Vegetation Indices from UAV-based Multispectral and Digital Imagery[J]. Isprs Journal of Photogrammetry & Remote Sensing, 2017, 130:246-255.
34 Verger A, Vigneau N, Chéron C, et al. Green Area Index from an Unmanned Aerial System over Wheat and Rapeseed Crops[J]. Remote Sensing of Environment, 2014, 152:654-664.
[1] 何原荣,陈平,苏铮,王植,李权海. 基于三维激光扫描与无人机倾斜摄影技术的古建筑重建[J]. 遥感技术与应用, 2019, 34(6): 1343-1352.
[2] 万剑华,王朝,刘善伟,冯建伟,段政明. 消费级多旋翼无人机1∶500大比例尺测图的应用[J]. 遥感技术与应用, 2019, 34(5): 1048-1053.
[3] 李越帅,郑宏伟,罗格平,杨辽,王伟胜,桂东伟. 集成U-Net方法的无人机影像胡杨树冠提取和计数[J]. 遥感技术与应用, 2019, 34(5): 939-949.
[4] 林志玮,丁启禄,黄嘉航,涂伟豪,胡典,刘金福. 基于DenseNet的无人机光学图像树种分类研究[J]. 遥感技术与应用, 2019, 34(4): 704-711.
[5] 刘新杰,魏云霞,焦全军,孙奇,刘良云. 基于时序定量遥感的冬小麦长势监测与估产研究[J]. 遥感技术与应用, 2019, 34(4): 756-765.
[6] 程雪,贺炳彦,黄耀欢,孙志刚,李鼎,朱婉雪. 基于无人机高光谱数据的玉米叶面积指数估算[J]. 遥感技术与应用, 2019, 34(4): 775-784.
[7] 奚雷, 单楠, 杨沈斌, 张永光. 基于SCOPE模型的水稻不同生育期日光诱导叶绿素荧光及GPP模拟研究[J]. 遥感技术与应用, 2019, 34(3): 488-499.
[8] 田慧慧, 冯 莉, 赵璊璊, 郭 松, 董继伟. 无人机热红外城市地表温度精细特征研究 [J]. 遥感技术与应用, 2019, 34(3): 553-563.
[9] 李伟, 唐伶俐, 吴昊昊, 腾格尔, 周梅. 轻小型无人机载激光雷达系统研制及电力巡线应用[J]. 遥感技术与应用, 2019, 34(2): 269-274.
[10] 赵云,谢东海,邓磊,闫亚男,李博旭. 利用多角度影像计算BRDF的方法与系统实现[J]. 遥感技术与应用, 2018, 33(4): 741-749.
[11] 谢京凯,王福民,王飞龙,张东尼. 面向水稻LAI监测的植被指数土壤调节参数修正[J]. 遥感技术与应用, 2018, 33(2): 342-350.
[12] 何艺,周小成,黄洪宇,许雪琴. 基于无人机遥感的亚热带森林林分株数提取[J]. 遥感技术与应用, 2018, 33(1): 168-176.
[13] 周在明,杨燕明,陈本清. 基于无人机影像的滩涂入侵种互花米草植被信息提取与覆盖度研究[J]. 遥感技术与应用, 2017, 32(4): 714-720.
[14] 褚洪亮,肖青,柏军华,程娟. 基于无人机遥感的叶面积指数反演[J]. 遥感技术与应用, 2017, 32(1): 140-148.
[15] 雷小雨,卓莉,叶涛,陶海燕,王芳. 基于时差特征与随机森林的水稻种植面积提取[J]. 遥感技术与应用, 2016, 31(6): 1140-1149.