Please wait a minute...
img

官方微信

遥感技术与应用  2020, Vol. 35 Issue (3): 537-547    DOI: 10.11873/j.issn.1004-0323.2020.3.0537
LUCC专栏     
21世纪以来西安城乡梯度土地覆盖变化及对城市热岛影响时空特征
史姝姝1(),匡文慧2(),董斯齐2,3
1.西安科技大学测绘科学与技术学院遥感科学与技术系,陕西 西安 710600
2.中国科学院地理科学与资源研究所 陆地表层格局与模拟院重点实验室,北京 100101
3.中国科学院大学,北京 100049
Spatiotemporal Pattern of Urban-rural Aradient Land Cover Changes and Their Impact on Urban Heat Island in Xi′an City Since the 21st Century
Shushu Shi1(),Wenhui Kuang2(),Siqi Dong2,3
1.College of Geomatics Xi'an University of Science and Technology,Xi'an 710600, China
2.Key Laboratory of Land Surface Pattern and Simulation,Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences,Beijing 100101, China
3.University of Chinese Academy of Sciences,Beijing 100049, China
 全文: PDF(9489 KB)   HTML
摘要:

城市快速扩张导致城乡梯度土地覆盖发生显著的变化,引发不透水地表的增加,植被覆盖的减少,从而加剧了城市热岛强度。研究城乡梯度土地覆盖变化引起的城市热岛效应,并揭示城市热岛的时空特征及强度的变化,对城市规划建设、人居环境改善及提升城市生态系统服务功能具有重要的意义。基于Landsat系列4期影像,利用单窗算法反演西安市地表温度,计算热场变异指数得到热力场强度图并对其进行等级划分,结合土地利用/覆盖类型数据分析城乡梯度土地覆盖变化对城市热岛强度的影响。结果表明:①2000年西安市极强热岛效应区占研究区面积的10.58%,逐渐增加到2011年极强热岛效应区域的面积占比达到16.14%,而后到2015年降低为9.00%,整体上西安市城市热岛效应呈现出了先增长后降低的趋势;②2000年到2015年城乡建设用地面积增加了412.76 km2,极强热岛强度的范围随城市建成区的扩张逐年向外扩展;③无热岛效应区约70%位于耕地和林地,水域在无热岛效应中的占比也在逐年增多,从31%增加到了47%。不透水地表面积占比与地表温度有显著相关性,城乡梯度植被和水体面积的增加可以有效地缓解城市热岛强度。

关键词: 城市热岛土地覆盖变化地表温度遥感城市建成区西安市    
Abstract:

Rapid urban expansion had a significant impact in land use/cover change along urban-rural gradient, and the increase of impervious construction land and the reduction of vegetation cover had induced and aggravated the urban heat island effect. Studying the impact of urban-rural gradient land cover change on urban heat island effect was significant for urban planning and construction, improving the comfort of human settlements and enhancing the function of urban ecological services. The surface temperature of Xi'an city was retrieved by mono-window algorithm based on Landsat images, and the thermal field intensity map was obtained by calculating the thermal field variation index, and the gradient land cover changes in urban and rural areas were analyzed with land use data. The results showed that: ①The urban heat island effect in Xi'an showed a trend of first increasing and then decreasing from 2000 to 2015. In 2000, the extremely strong heat island effect area accounted for 10.58% of the research area, and gradually increased to 16.14% in 2011, and then decreased to 9.00% in 2015. ②From 2000 to 2015, the area of construction land increased 412.76 km2 and the intensity of extremely strong heat island expanded year by year with the expansion of urban built-up areas. ③About 70% of the non-heat island effect areas were located on farmland and forest land, and the proportion of water area in the non-heat island effect was increasing year by year from 31% to 47%, which showed that the increase of vegetation and water area could effectively alleviate the urban heat island effect.

Key words: Urban heat island effect    Land use change    Land surface temperature    Remote sensing    Urban built-up area    Xi’an
收稿日期: 2019-02-26 出版日期: 2020-07-10
ZTFLH:  TP79  
基金资助: 国家自然科学基金重大项目(41590842);2018年“中国科学院大学生创新实践训练计划”项目
通讯作者: 匡文慧     E-mail: shishushu926@163.com;kuangwh@igsnrr.ac.cn
作者简介: 史姝姝(1998-),女,内蒙古乌兰察布人,学士,主要从事遥感科学与技术研究。E?mail:shishushu926@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
史姝姝
匡文慧
董斯齐

引用本文:

史姝姝,匡文慧,董斯齐. 21世纪以来西安城乡梯度土地覆盖变化及对城市热岛影响时空特征[J]. 遥感技术与应用, 2020, 35(3): 537-547.

Shushu Shi,Wenhui Kuang,Siqi Dong. Spatiotemporal Pattern of Urban-rural Aradient Land Cover Changes and Their Impact on Urban Heat Island in Xi′an City Since the 21st Century. Remote Sensing Technology and Application, 2020, 35(3): 537-547.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2020.3.0537        http://www.rsta.ac.cn/CN/Y2020/V35/I3/537

热场变异指数热岛效应强度
≤0
0.01~0.05
0.06~0.10
0.11~0.15较强
0.16~0.19
≥0.20极强
表1  热场变异指数等级划分
图1  研究区2000年土地利用状况和城乡梯度缓冲区
图2  2000~2015年土地利用/覆盖类型及城市不透水地表面积比例图
土地利用/覆盖类型2000年2005年2010年2015年2000~2015年变化
耕地825.132 715.492 584.222 439.00-386.14
林地1 131.911 130.291 149.581 144.7512.84
草地1 154.641 162.371 106.511 106.60-48.04
水域91.85106.0193.71100.498.64
城乡建设用地659.16747.84928.681 071.92412.76
未利用土地1.201.201.181.13-0.07
表2  2000~2015年各土地利用/覆盖类型面积变化 (km2)
图3  2000~2015年西安市地表温度分布图
图4  2000~2015年西安市热力场强度等级分布图
年份无热岛弱热岛中热岛较强热岛强热岛极强热岛
200045.3912.7111.7011.498.1410.58
200340.1810.6416.2212.369.3611.23
201143.318.6711.2110.769.9116.14
201552.7212.6810.368.356.899.00
表3  2000~2015年城市热岛强度面积占比 (%)
图5  城乡梯度地表温度与不透水地表面积比例变化
1 Department of Economic and Social Affairs. United Nations Statistics Yearbook[M]. New York:United Nations,2019.
2 Zhang Hao,Xu Hanqiu,Li Le,et al. Analysis of the Relationship between Urban Heat Island Effect and Urban Expansion in Chengdu,China[J]. Journal of Geo-information Science,2014,16(1):70-78.
2 张好,徐涵秋,李乐,等. 成都市热岛效应与城市空间发展关系分析[J]. 地球信息科学学报,2014,16(1):70-78.
3 Hunt A,Watkiss P. Climate Change Impacts and Adaptation In cities:A Review of the Literature[J]. Climatic Change,2011,104(1):13-49.
4 Kuang Wenhui,Liu Jiyuan,Zhang Zengxiang,et al. SpatiotemPoral Dynamics of Impervious Surface Areas Across China During the Early 21st Century[J]. Chinese Science Bulletin,2013,58:465-478.
4 匡文慧,刘纪远,张增祥,等. 21世纪初中国人工建设不透水地表遥感监测与时空分析[J]. 科学通报,2013,58:465-478.
5 Kuang Wenhui. Remote Sensing Analysisand Ecological Regulation of Urban Surface Thermal Environment[M]. Beijing:Science Press,2015.
5 匡文慧. 城市地表热环境遥感分析与生态调控[M]. 北京:科学出版社,2015.
6 Berger C,Rosentreter J,Voltersen M,et al. Spatio-temporal Analysis of the Relationship between 2D/3D Urban Site Characteristics and Land Surface Temperature[J]. Remote Sensing of Environment,2017,193:225-243.
7 Kuang W H,Dou Y Y,Zhang C,et al. Quantifying the Heat Flux Regulation of Metropolitan Land Use/Land Cover Components by Coupling Remote Sensing Modeling with in Situ Measurement[J]. Journal of Geophysical Research:Atmospheres,2015,120(1):113–130.
8 Lin Yunshan,Xu Hanqiu. A Study on Urban Impervious Surface Area and Its Relation with Urban Heat Island:Quanzhou City,China[J]. Remote Sensing Technology and Application,2007,22(1):14-19.
8 林云杉,徐涵秋. 城市不透水面及其与城市热岛的关系研究——以泉州市区为例[J]. 遥感技术与应用,2007,22(1):14-19.
9 Pan Jinghu,Feng Zhaodong,Xiang Denian,et al. Analysis onThermal Environment Effect of Land Use Type and Patternin Valley City——A Case Study of Lanzhou City[J]. Remote Sensing Technology and Application,2008,23(2):201-207.
9 潘竟虎,冯兆东,相得年,等. 河谷型城市土地利用类型及格局的热环境效应遥感分析——以兰州市为例[J]. 遥感技术与应用,2008,23 (2):201-207.
10 Xia Junshi,Du Peijun,Zhang Hairong,et al. The Quantitative Relationship between Land Surface Temperature and Land Cover Types based on Remotely Sensed Data[J]. Remote Sensing Technology and Application,2010,25(1):15-23.
10 夏俊士,杜培军,张海荣,等. 基于遥感数据的城市地表温度与土地覆盖定量研究[J]. 遥感技术与应用,2010,25(1):15-23.
11 Rao P. Remote Sensing of Urban Heat Islands from an Environmental Satellite[J]. Bulletin of the American Meteorological Society,1972(53):647-648.
12 Matson M,Mcclain E P,Mcginnis D F,et al. Satellite Detection of Urban Heat Islands[J]. Monthly Weather Review,1978,106(12):1725-1734.
13 Streutker D R. A Remote Sensing Study of the Urban Heat Island of Houston,Texas[J]. International Journal of Remote Sensing,2002,23(13):2595-2608.
14 Ye Ke,Qin Zhihao. A Study of Urban Heat Island in Summer of Nanjing based on MODIS Data[J]. Remote Sensing Technology and Application,2006,21(5):426-431.
14 叶柯,覃志豪. 基于MODIS数据的南京市夏季城市热岛分析[J]. 遥感技术与应用,2006,21(5):426-431.
15 Chen Yunhao,Shi Peijun,Li Xiaobing. Research on Spatial Thermal Environment in Shanghai City based on Remote Sensing and GIS[J]. Acta Geodaetica et Cartographica Sinica,2002,31(2):139-144.
15 陈云浩,史培军,李晓兵. 基于遥感和GIS的上海城市空间热环境研究[J]. 测绘学报,2002,31(2):139-144.
16 Dai Xiaoyan,Zhang Liquan,Guo Zhongyang,et al. Mechanism of Formation of Urban Heat Island Effect and Its Spatial Pattern in Shanghai[J]. Acta Ecologica Sinica,2009,29(7):3995-4004.
16 戴晓燕,张利权,过仲阳,等. 上海城市热岛效应形成机制及空间格局[J]. 生态学报,2009,29(7):3995-4004.
17 Wei Chunzhu,Meng Qingyan,Zheng Wenfeng,et al. The Study of Quantitative Relationship between Land Surface Temperature and Land Cover of Guangzhou[J]. Remote Sensing Technology and Application,2013,28(6):955-963.
17 韦春竹,孟庆岩,郑文锋,等. 广州市地表温度反演与土地利用覆盖变化关系研究[J]. 遥感技术与应用,2013,28(6):955-963.
18 Resource and Environment Data Center of Chinese Academy of Sciences. Land Use Data in China[DB/OL].
18 . [中国科学院资源环境科学数据中心. 中国土地利用现状遥感监测数据[DB/OL]. .
19 Kuang Wenhui,Chen Lijun,Liu Jiyuan,et al. Remote Sensing Based Artificial Surface Cover Classification in Asia and Spatial Pattern Analysis[J]. Science China Earth Sciences,2016,46(9):1162-1179.
19 匡文慧,陈利军,刘纪远,等. 亚洲人造地表覆盖遥感精细化分类与分布特征分析[J]. 中国科学:地球科学,2016,46(9):1162-1179.
20 Qin Zhihao,Zhang Minghua,Karniel Arnon ,et al. Mono-window Algorithm for Retrieving Land Surface Temperature from Landsat TM6 Data[J]. Acta Geographica Sinica,2001,56(4):456-466.
20 覃志豪,张明华,Karineli Arnom ,等. 用陆地卫星TM6数据演算地表温度的单窗算法[J]. 地理学报,2001,56(4):456-466.
21 Qin Zhihao,Li Wenjuan,Xu Bin,et al. The Tabular Auto-generatio Technology for Field Survey in Land-use Dynamic Monitoring[J]. Remote Sensing for Land and Resources,2004,16(3):28-32,36,41.
21 覃志豪,李文娟,徐斌,等. 陆地卫星TM6波段范围内地表比辐射率的估计[J]. 国土资源遥感,2004,16(3):28-32,36,41.
22 Qin Zhihao,Li Wenjuan,Zhang Minghua,et al. Estimating of the Essential Atomospheric Parameters of Mono-window Algorithm for Land Surface Temperature Retrieval from Landsat TM6[J]. Remote Sensing for Land and Resources,2003,15(2):37-43.
22 覃志豪,李文娟,张明华,等. 单窗算法的大气参数估计方法[J]. 国土资源遥感,2003,15(2):37-43.
23 Zhang Yong,Yu Tao,Gu Xingfa,et al. Land Surface Temperature Retrieval from CBERS-02 IRMSS Thermal Infrared Data and Its Applications in Quantitative Analysis of Urban Heat Island Effect[J]. Journal of Remote Sensing,2006,10(5):789-797.
23 张勇,余涛,顾行发,等. CBERS-02 IRMSS热红外数据地表温度反演及其在城市热岛效应定量化分析中的应用[J]. 遥感学报,2006,10(5):789-797.
24 Kuang Wenhui. Advance and Future Prospects of UrbanLand Use/Cover Change and Ecological Regulation of Thermal Environment[J]. Scientia Geographica Sinica,2018,38(10):1643-1652.
24 匡文慧. 城市土地利用/覆盖变化与热环境生态调控研究进展与展望[J]. 地理科学,2018,38(10):1643-1652.
25 Liu Yufeng,Yuan Zhihua,Kong Wei,et al. The Changing Trend of Heat Island Intensity and Main Influencing Factors during 1993~2012 in Xi'an City[J]. Journal of Natural Resources,2015,30(06):974-985.
25 刘宇峰,原志华,孔伟,等. 1993~2012年西安城区城市热岛效应强度变化趋势及影响因素分析[J]. 自然资源学报,2015,30(06):974-985.
26 Li Yao,Pan Jinghu,Luo Jing. Urban Heat Environment and Surface Energy Balance Analysis of Xi’an based on LDCM Remote Sensing[J]. Remote Sensing Technology and Application,2015,30(5):868-875.
26 李瑶,潘竟虎,罗晶. 基于Landsat 8影像和能量平衡的西安市热场格局研究[J]. 遥感技术与应用,2015,30(5):868-875.
27 Bian Zihao,Ma Chaoqun,Wang Di,et al. Relation between the Urban Heat Island Effect and Landscape Ecological Pattern in Xi’an Region[J]. Journal of Arid Meteorology,2016,34(2):342-348.
27 卞子浩,马超群,王迪,等. 西安地区热岛效应与景观生态格局相关性研究[J]. 干旱气象,2016,34(2):342-348.
28 Wang Meiya,Xu Hanqiu. Analyzing the Influence of Urban forms on Surface Urban Heat Islands Intensity in Chinese Mega Cities[J]. Journal of Geo-information Science,2018,20(12):1787-1798.
28 王美雅,徐涵秋. 中国大城市的城市组成对城市热岛强度的影响研究[J]. 地球信息科学学报,2018,20(12):1787-1798.
[1] 李智礼,匡文慧,张澍. 近70 a天津主城区城市土地利用/覆盖变化遥感监测与时空分析[J]. 遥感技术与应用, 2020, 35(3): 527-536.
[2] 李净,温松楠. 基于3种机器学习法的太阳辐射模拟研究[J]. 遥感技术与应用, 2020, 35(3): 615-622.
[3] 虞瑶,苏红军,姚文静. 基于Boosting的高光谱遥感切空间协同表示集成学习方法[J]. 遥感技术与应用, 2020, 35(3): 634-644.
[4] 马彩虹,关琳琳,陈甫,王大成,刘建波. 基于内容的遥感图像变化信息检索概念模型设计[J]. 遥感技术与应用, 2020, 35(3): 685-693.
[5] 岳昂,曾庆伟,王怀警. 于桥水库蓝藻水华遥感长时序监测研究[J]. 遥感技术与应用, 2020, 35(3): 694-701.
[6] 谷祥辉,张英,桑会勇,翟亮,李少军. 基于哨兵2时间序列组合植被指数的作物分类研究[J]. 遥感技术与应用, 2020, 35(3): 702-711.
[7] 寇勇,王宁练,陈安安,刘凯. 1993~2016年喜马拉雅山西段杰纳布流域冰川变化遥感监测[J]. 遥感技术与应用, 2020, 35(3): 712-722.
[8] 张平,孙强强,张亚萍,孙丹峰,刘顺喜. 基于宽波段遥感光谱混合分解的干旱区土地退化监测评价理论和技术方法探讨[J]. 遥感技术与应用, 2020, 35(2): 497-508.
[9] 程娟,肖青,闻建光,唐勇,游冬琴,卞尊健,吴胜标,郝大磊,钟守熠. 地物波谱数据库应用方法及遥感应用现状[J]. 遥感技术与应用, 2020, 35(2): 267-286.
[10] 谭美宝,冉有华,苏阳,李新,杜得彦,廉耀康. 黑河流域2001~2017年植被变化特征及其可延续性评价[J]. 遥感技术与应用, 2020, 35(2): 335-344.
[11] 纪甫江,蒙继华,方慧婷. 基于CASA-WOFOST耦合模型的大豆单产遥感估算研究[J]. 遥感技术与应用, 2020, 35(2): 406-415.
[12] 唐廷元,付波霖,何素云,娄佩卿,闭璐. 基于GF-1和Sentinel-1A的漓江流域典型地物信息提取[J]. 遥感技术与应用, 2020, 35(2): 448-457.
[13] 李宜展, 李泽霞, 刘细文, 魏韧, 郭世杰, 董璐. 遥感科学数据应用态势分析[J]. 遥感技术与应用, 2020, 35(1): 1-12.
[14] 张新平,乔治,李皓,闫杰,张芳芳,赵栋锋,王得祥,康海斌,杨航,冯扬. 基于Landsat影像和不规则梯形方法遥感反演延安城市森林表层土壤水分[J]. 遥感技术与应用, 2020, 35(1): 120-131.
[15] 李雷,郑兴明,赵凯,李晓峰,王广蕊. 基于CCI土壤水分产品的干旱指数精度评价及其对东北地区粮食产量的影响[J]. 遥感技术与应用, 2020, 35(1): 111-119.