Please wait a minute...
img

官方微信

遥感技术与应用  2020, Vol. 35 Issue (3): 548-557    DOI: 10.11873/j.issn.1004-0323.2020.3.0548
LUCC专栏     
基于云平台的中哈干旱区典型城市地表覆盖变化遥感监测与比较
陈馨1,2(),匡文慧1()
1.中国科学院地理科学与资源研究所,陆地表层格局与模拟重点实验室,北京 100101
2.中国科学院大学,北京 100049
Remote Sensing Monitoring and Comparison of Urban Land Cover Changes in Typical Cities in China-Kazakhstan Arid Region based on Cloud Platform
Xin Chen1,2(),Wenhui Kuang1()
1.Key Laboratory of Land Surface Pattern And Simulation, Institute of Geographic Sciences And Natural Resources Research, Chinese Academy of Sciences, Beijing 100101
2.University of Chinese Academy of Sciences, Beijing 100049
 全文: PDF(5899 KB)   HTML
摘要:

城市地表覆盖组分是影响人居生存环境和城市生态系统服务的关键因素。基于Google Earth Engine平台,利用Landsat 5/8遥感影像数据,采用改进的“植被—不透水面—土壤”模型及线性光谱混合分解方法,提取地处干旱区的中国西部大城市乌鲁木齐市与邻国哈萨克斯坦首都城市努尔–苏丹市、大城市阿拉木图市的地表覆盖信息,对比分析1990~2015年3个城市地表覆盖的变化特征。结果表明:1990~2015年间乌鲁木齐市城市建成区扩张面积最大,扩张了349.81 km2;其次为努尔-苏丹市,城市扩张面积为158.16 km2;由于哈萨克斯坦首都由阿拉木图市迁往努尔-苏丹市,整个时段阿拉木图市城市扩张最慢,总计扩张了126.23 km2。在城市建成区内,1990年到2015年间乌鲁木齐市城市地表不透水组分增加了7.10%,努尔—苏丹市和阿拉木图市分别减少了14.9%、4.49%。建成区内绿地组分努尔—苏丹市从1990年到2015年增加了6.68%;乌鲁木齐市和阿拉木图市分别减少了6.65%和2.75%。城市所表现出来的不同地表覆盖特征乌鲁木齐市主要受国家政策支持,阿拉木图市由于其历史背景和城市规划,努尔—苏丹市城市的快速发展则受哈萨克斯坦迁都的影响。

关键词: 不透水面绿地土地利用/覆盖干旱区Google Earth Engine    
Abstract:

Urban land cover composition is the key factor affecting the living environment and urban ecosystem service. Based on the Google Earth Engine platform, Landsat 5/8 remote sensing image data were used to adopt the improved "Vegetation-Impervious Surface-Soil" model and linear spectral mixed decomposition method. The variation characteristics of land cover in Nur-Sudan, Almaty, Urumqi cities from 1990 to 2015 were compared and analyzed. The results show that the urban built-up area of Urumqi city expanded the largest area of the three cities from1990 to 2015, with an expansion of 349.81 km2, followed by Nur-Sultan, with a city expansion area of 158.16 km2. As the capital of Kazakhstan was relocated from Almaty to Nur-Sultan, the city of Almaty expanded the slowest during the entire period, with a total expansion of 126.23 km2. In the urban built-up area, the urban surface in Urumqi increased by 7.10% from 1990 to 2015, and the Nur-Sultan and Almaty decreased by 14.9% and 4.49%,respectively. The green space component of the built-up area, Nur-Sultan increased by 6.68% from 1990 to 2015, while Urumqi and Almaty decreased by 6.65% and 2.75%,respectively. The different surface cover patterns of cities are different for different reasons. Urumqi is mainly supported by national policies, and Almaty is known for its historical background and urban planning, while the rapid development of Nur-Sudan was affected by the relocation of Kazakhstan.

Key words: Impervious surface    Green space    Urban Land Cover Change    Arid areas    Google Earth Engine
收稿日期: 2019-09-16 出版日期: 2020-07-10
ZTFLH:  TP79  
基金资助: 中国科学院战略性先导科技专项“泛第三极环境变化与绿色丝绸之路建设”课题(XDA20040400);第二次青藏高原综合科学考察研究资助“人类活动影响与生存环境安全评估”(2019QZKK0608)
通讯作者: 匡文慧     E-mail: chenx.16s@igsnrr.ac.cn;kuangwh@igsnrr.ac.cn
作者简介: 陈馨(1993-),女,湖南保靖人,硕士研究生,主要从事土地利用/覆盖变化研究。E?mail:chenx.16s@igsnrr.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈馨
匡文慧

引用本文:

陈馨,匡文慧. 基于云平台的中哈干旱区典型城市地表覆盖变化遥感监测与比较[J]. 遥感技术与应用, 2020, 35(3): 548-557.

Xin Chen,Wenhui Kuang. Remote Sensing Monitoring and Comparison of Urban Land Cover Changes in Typical Cities in China-Kazakhstan Arid Region based on Cloud Platform. Remote Sensing Technology and Application, 2020, 35(3): 548-557.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2020.3.0548        http://www.rsta.ac.cn/CN/Y2020/V35/I3/548

图1  典型城市示意图
城市国家坐标平均海拔 /m年降水量 /mm年均气温 /°C气候类型人口(万人)注1
1990年2015年
努尔–苏丹市哈萨克斯坦71°30'E,51°10'N34726.451.8温带大陆性气候28.3375.9
阿拉木图市76°55'E,43°19'N80054.468.5温带大陆性气候108.01152.26
乌鲁木齐市中国87°36'E,43°48'N80015.67中温带大陆性气候124.09349.86
表1  城市概况
城市数据类型获取时间行列号代表年份
乌鲁木齐市Landsat519890819143/0291990
Landsat520010507143/0292000
Landsat520090826142/0302010
Landsat820140831143/0292015
努尔–苏丹市Landsat519890604154/0241990
Landsat519980924155/0242000
Landsat520090618155/0242010
Landsat820140819155/0242015
阿拉木图市Landsat519900807149/0301990
Landsat519971029149/0302000
Landsat520100424149/0302010
Landsat820140901150/0302015
表2  遥感影像数据源
图2  城市地表覆盖组分数据提取流程图(注2:T1表示水体的阈值,water表示水体的0-1值,Veg表示植被的组分,Isa表示不透水面组分,Soil表示裸土组分)
努尔–苏丹市阿拉木图市乌鲁木齐市
缓冲区个数/个最大缓冲区半径/km缓冲区个数/个最大缓冲区半径/km缓冲区个数/个最大缓冲区半径/km
19901512247.53919.5
2000241224124120.5
20102415.531125025
20152717.53513.55829
表3  建成区内缓冲区的个数
图3  不同城市的城市不透水地表组分精度验证
图4  各城市不同年份城市地表不透水组分图
图5  各城市不同年份城市土地面积(km2)
图6  城市内部结构面积比较
图7  各城市不同年份组分比较
图8  距城市不同距离内城市不透水地表组分
1 Nations United, Department of Economic and Social Affairs, Division Population. World Urbanization Prospects: The 2018 Revision,[DB/OL]. https://population.un.org/wup/Download/, 2018, 2019.
2 Li X, Zhou W, Ouyang Z. Forty Years of Urban Expansion in Beijing: What is the Relative Importance of Physical, Socioeconomic, and Neighborhood Factors[J]. Applied Geography, 2013, 38(1):1-10.
3 Mcdonnell M J, Macgregor-Fors I. The Ecological Future of Cities[J]. Science, 2016, 352(6288): 936.doi:10.1126/science.Aaf3630.
doi: 10.1126/science.Aaf3630
4 Voorde T V D, Wolfgang J, Frank C. Mapping form and Function in Urban Areas: An Approach based on Urban Metrics and Continuous Impervious Surface Data[J]. Landscape & Urban Planning, 2011, 102(3): 143-155.
5 Kuang Wenhui, Chi Wenfeng, Shi Wenjiao. Spatio-temporal Characteristics of Intra-urban Land Cover in the Cities of China and USA from 1978 to 2010[J].Acta Geographica Sinica, 2014, 69(7): 883-895.
5 匡文慧,迟文峰,史文娇. 中国与美国大都市区城市内部土地覆盖结构时空差异[J]. 地理学报, 2014, 69(7): 883-895.
6 Pan T, Lu D, Zhang C, et al. Urban Land-Cover Dynamics in Arid China based on High-Resolution Urban Land Mapping Products[J]. Remote Sensing, 2017, 9(7): 730.doi:10.3390/RS9070730.
doi: 10.3390/RS9070730
7 Kuang Wenhui, Chen Lijun, Liu Jiyuan, et al. Remote Sensing-based Artificial Surface Cover Classification in Asia and Spatial Pattern Analysis[J]. Scientia Sinica(Terrae), 2016, 46(9): 1162-1179.
7 匡文慧,陈利军,刘纪远, 等. 亚洲人造地表覆盖遥感精细化分类与分布特征分析[J]. 中国科学:地球科学, 2016, 46(9): 1162-1179.
8 Nor A N M, Abdullah S A. Developing Urban Green Space Classification System Using Multi-Criteria: The Case of Kuala Lumpur City, Malaysia[J]. Journal of Landscape Ecology, 2019, 12(1):16-36.
9 Baoxing Chou. The Connotation, Ways and Prospects of Sponge City(LID) [J]. Construction Science and Technology, 2015(1): 11-18.仇保兴.海绵城市(LID)的内涵、途径与展望[J]. 建设科技, 2015(1): 11-18.
10 Chi W, Shi W, Kuang W. Spatio-temporal Characteristics of Intra-urban Land Cover in the Cities of China and USA from 1978 to 2010[J]. Journal of Geographical Sciences, 2015,25(1): 3-18.
11 Hou Langong, Fu Juanlin. Research on Landscape Ecological Effects of Urban Bare Soil[J]. Shanxi Architecture, 2008(13): 344-345.
11 符娟林,侯兰功. 城市裸土地景观生态效应研究[J]. 山西建筑, 2008(13): 344-345.
12 Tan Chunyang, Kuang Wenhui, Xu Tianshu, et al. Analyzing Spatio-temporal Pattern of Impervious Surface for Recent Two Decades in ShanghaiAnalyzing Spatio-temporal Pattern of Impervious Surface for Recent Two Decades in Shanghai[J]. Journal of Geomatics. 2014,39(3):71-74.谭春阳,匡文慧,徐天蜀,等.近20年上海市不透水地表时空格局分析[J].测绘地理信息,2014,39(3):71-74.
13 Lu D, Li L, Li G. et al. Examining Spatial Patterns of Urban Distribution and Impacts of Physical Conditions on Urbanization in COASTAL and Inland Metropoles[J]. Remote Sensing, 2018, 10(7): 1101.doi:10.3390/RS/0071101.
doi: 10.3390/RS/0071101
14 kasimu Alimujiang, Tang Bing, Maimaitiming Anwaer. Human Geography, Study on Spatio-Temporal Dynamics of Urban Expansion In Five Central Asian Cities based on Remote Sensing Data[J]. Human Geography,2012, 27(4): 83-87.
14 阿里木江·卡斯木,唐兵,安瓦尔·买买提明. 基于遥感数据的中亚五国城市时空扩展变化研究[J]. 人文地理, 2012, 27(4): 83-87.
15 kasimu Alimujiang, Tang Bing, Maimaitiming Anwaer. Study on the Urbanization Development Characteristics of Central Asia (1960-2009)[J]. Journal of Arid Land Resources and Environment,2013, 27(1), 21-26.阿里木江·卡斯木,唐兵,安瓦尔·买买提明.近50年来中亚五国城市化发展特征研究[J]. 干旱区资源与环境, 2013, 27(1): 21-26.
16 kasimu Alimujiang. Research on the Urban Expansion of Xinjiang in China, Central Asia and West Asia along the Belt and Road[J]. Economic Geography, 2017, 37(5): 51-57.
16 阿里木江·卡斯木. “一带一路”沿线之中国新疆—中亚—西亚城市空间扩张[J]. 经济地理, 2017, 37(5): 51-57.
17 Ridd M K. Exploring a V-I-S (Vegetation-Impervious Surface-Soil) Model for Urban Ecosystem Analysis Through Remote Sensing: Comparative Anatomy for Cities[J]. International Journal of Remote Sensing, 1995, 16(12): 2165-2185.
18 Wu J, Jenerette G.D, David J.L. Linking Land-use Change with Ecosystem Processes: A Hierarchical Patch Dynamic Model. In: Guhathakurta S. (eds)Integrated Land Use and Environmental Models[M]. Springer, Berlin, Heidelberg, 2003.
19 Xu Hanqiu, Wang Meiya. Remote Sensing-based Retrieval of Ground Impervious Surfaces[J]. Journal of Remote Sensing, 2016, 20(5): 1270-1289.
19 徐涵秋,王美雅. 地表不透水面信息遥感的主要方法分析[J]. 遥感学报, 2016, 20(5): 1270-1289.
20 Liu Yuzhi, Wu Chuqiao, Jia Rui, et al. An Overview of the Influence of Atmospheric Circulation on the Climate in Arid and Semi-arid Region of Central and East Asia[J].Scientia Sinica(Terrae), 2018, 48(9): 1141-1152.
20 刘玉芝,吴楚樵,贾瑞, 等. 大气环流对中东亚干旱半干旱区气候影响研究进展[J]. 中国科学:地球科学, 2018, 48(9): 1141-1152.
21 Bi Geng, Assan M. The Status Quo of Astana City Image Spreading in China and Its Improvement Countermeasures[J]. Media Forum, 2019, 2(3): 4-6.
21 毕耕,ASSAN M.阿斯塔纳城市形象在中国的传播现状及其改进对策[J]. 传媒论坛, 2019, 2(3): 4-6.
22 Wei Youyin. Cultural Impression of the Capital of Kazakhstan[N]. China Culture Daily, 2019, 05-22 (004)
22 未酉寅.哈萨克斯坦首都文化印象[N].中国文化报, 2019, 05-22 (004). ]
23 Bo Teer, Gao Hong. The Role of Kazakhstan in the Construction of the Silk Road[J]. Reform & Openning, 2017(15): 62-63.
23 波特尔,高宏. 哈萨克斯坦在丝绸之路建设中的作用[J]. 改革与开放, 2017(15): 62-63.
24 Madina B. The path of the "Bright Road" and the "Silk Road Economic Belt"[J]. Sci-Tech & Development of Enterprise, 2018, 438(4):43-45.
24 Madina B. “光明之路”与“丝绸之路经济带”的对接路径[J].企业科技与发展,2018,438(4):43-45.
25 Li Junyi. Research on Trade Development between China and Kazakhstan under the Background of “Belt and Road”[J]. Marketing Management Review, 2019(1): 248.
25 李俊毅. “一带一路”背景下中国与哈萨克斯坦的贸易发展研究[J]. 现代营销(下旬刊), 2019(1): 248.
26 Pan T, Kuang W, R Hamdiet al. City-Level Comparison of Urban Land-Cover Configurations from 2000–2015 across 65 Countries within the Global Belt and Road[J]. Remote Sensing, 2019,11(13): 1515.doi:10.3390/rs11131515.
doi: 10.3390/rs11131515
27 Xu Hanqiu. A Study on Information Extraction of Water Body with the Modified Normalized Difference Water Index(MNDWI)[J]. Journal of Romote Sensing, 2005,19(5): 589-595.
27 徐涵秋.利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J]. 遥感学报, 2005,19(5): 589-595.
28 Kuang Wenhui, Yang Tianrong, Liu Alin, et al. An Eco City Model for Regulating Urban Land Cover Structure and Thermal Environment:Taking Beijing as an Example[J]. Science China Earth, 2017, 47(7): 847-859.
28 匡文慧,杨天荣,刘爱琳, 等.城市地表覆盖结构组分与热环境调控模型(EcoCity)研究——以北京城市为例[J]. 中国科学:地球科学, 2017, 47(7): 847-859.
29 Kuang W, Liu J, Zhang Z, et al. Spatiotemporal Dynamics of Impervious Surface Areas Across China During the Early 21st Century[J].Chinese Science Bulletin,2013,58(14):1691-1701.
30 Schneider A, Mertes C M. Expansion and Growth in Chinese Cities, 1978~2010[J]. Environmental Research Letters, 2014,9(2):24008.doi:10.1088/1748-932619121024008.
doi: 10.1088/1748-932619121024008
31 Park H, Fan P, John R, et al. Urbanization on the Mongolian Plateau after Economic Reform: Changes and Causes[J]. Applied Geography, 2017,86:118-127.doi:10.1016/J.Apgeog.2017.06.026.
doi: 10.1016/J.Apgeog.2017.06.026
[1] 李智礼,匡文慧,张澍. 近70 a天津主城区城市土地利用/覆盖变化遥感监测与时空分析[J]. 遥感技术与应用, 2020, 35(3): 527-536.
[2] 柴旭荣,李明,周义,王金风,田庆春. 影像的土地覆被快速分类[J]. 遥感技术与应用, 2020, 35(2): 315-325.
[3] 龙爽,郭正飞,徐粒,周华真,方伟华,许映军. 基于Google Earth Engine的中国植被覆盖度时空变化特征分析[J]. 遥感技术与应用, 2020, 35(2): 326-334.
[4] 谭美宝,冉有华,苏阳,李新,杜得彦,廉耀康. 黑河流域2001~2017年植被变化特征及其可延续性评价[J]. 遥感技术与应用, 2020, 35(2): 335-344.
[5] 庄元, 薛东前, 匡文慧, 迟文峰, 潘涛. 中国半干旱区呼包鄂城市群地表覆盖等级结构时空特征研究[J]. 遥感技术与应用, 2019, 34(1): 197-206.
[6] 张滔,唐宏. 基于Google Earth Engine的京津冀2001~2015年植被覆盖变化与城镇扩张研究[J]. 遥感技术与应用, 2018, 33(4): 593-599.
[7] 郝斌飞,韩旭军,马明国,刘一韬,李世卫. Google Earth Engine在地球科学与环境科学中的应用研究进展[J]. 遥感技术与应用, 2018, 33(4): 600-611.
[8] 苏阳,祁元,王建华,徐菲楠,张金龙. 基于航空高光谱影像的额济纳绿洲土地覆被提取[J]. 遥感技术与应用, 2018, 33(2): 202-211.
[9] 陈栋栋,赵军. 我国西北干旱区湖泊变化时空特征[J]. 遥感技术与应用, 2017, 32(6): 1114-1125.
[10] 于惠,吴玉锋,金毅,张峰. 基于MODIS SWIR数据的干旱区草地地上生物量反演及时空变化研究[J]. 遥感技术与应用, 2017, 32(3): 524-530.
[11] 李小龙,杨英宝,曹利娟,章勇. 基于遥感和CFD模拟的城市绿地形态对热环境的影响研究[J]. 遥感技术与应用, 2016, 31(6): 1150-1157.
[12] 王定文,黄春林,顾娟. 干旱区地表L波段微波辐射特性分析穿透深度的影响[J]. 遥感技术与应用, 2016, 31(3): 580-589.
[13] 行敏锋,何彬彬. 主被动遥感数据协同估算干旱区草原植被生物量[J]. 遥感技术与应用, 2015, 30(6): 1122-1128.
[14] 韩忻忆,颉耀文. 基于决策树的干旱区湿地信息自动提取—以疏勒河流域为例[J]. 遥感技术与应用, 2015, 30(6): 1146-1152.
[15] 李琴,陈曦,包安明,徐征和,赵强. 基于SEBS模型干旱区蒸散发量研究[J]. 遥感技术与应用, 2014, 29(2): 195-201.