Please wait a minute...
img

官方微信

遥感技术与应用  2020, Vol. 35 Issue (3): 712-722    DOI: 10.11873/j.issn.1004-0323.2020.3.0712
遥感应用     
1993~2016年喜马拉雅山西段杰纳布流域冰川变化遥感监测
寇勇1,2(),王宁练1,2,3(),陈安安1,2,刘凯1,2
1.陕西省地表系统与环境承载力重点实验室,陕西 西安 710127
2.西北大学 城市与环境学院 地表系统与灾害研究院,陕西 西安 710127
3.中国科学院青藏高原地球科学卓越创新中心,北京 100101
Monitoring Variation of Glaciers based on Remote Sensing Images in the Chenab Basin,Western-Himalaya,1993~2016
Yong Kou1,2(),Ninglian Wang1,2,3(),An’an Chen1,2,Kai Liu1,2
1.Shaanxi Key Laboratory of Erath Surface System and Environmental Carrying Capacity,Xi’an 710127, China
2.Northwest University The College of Urban and Environmental Sciences Institute of Surface Systems and Disasters,Xi’an 710127, China
3.Chinese Academy of Sciences Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China
 全文: PDF(4428 KB)   HTML
摘要:

基于Landsat TM/ETM+及OLI遥感影像,对喜马拉雅山西段杰纳布流域冰川面积进行提取,对冰川时空分布特征及其变化分析,并结合周边气象台站及CRU再分析资料气温、降水量资料对研究区冰川变化原因进行讨论。结果表明:①1993~2016年杰纳布流域冰川面积萎缩了164.56±161.72 km2,占总面积的5.78%,年均萎缩率为0.25±0.25 %·a-1,且在2000年后加快萎缩;②杰纳布流域冰川在各个朝向和海拔带上均呈萎缩趋势,其中S朝向冰川面积萎缩率最大,占研究区冰川萎缩总面积的24.35%; 4 600~4 800 m和4 800~5 000 m两个海拔高度带冰川面积近23 a分别减少了29.93 km2和30.91 km2,占流域冰川面积萎缩总量的17.72%和18.30%;③1993~2016年杰纳布流域共有28条冰川末端发生不同程度的前进现象;④对狮泉河和Srinagar气象站及CRU再分析资料气温、降水量变化分析表明,1993~2016年该区域年均气温呈显著上升是杰纳布流域冰川萎缩的主要原因。

关键词: 冰川变化喜马拉雅山杰纳布流域遥感监测    
Abstract:

Based on Landsat TM/ETM+/OLI remote sensing images,the glacier boundaries in the Chenab basin of western Himalayas in three periods were manually delineated with visual interpretation method, and the characteristics of glacier variation were also analyzed with the temperature and precipitation of the surrounding meteorological stations and CRU reanalysis data.The results show that: ①From 1993 to 2016,the glaciers area in Chenab basin decreased 164.56±161.72 km2,accounting for 5.78% of the total area. The annul average shrinkage rate is 0.25±0.25 %·a-1 and it accelerated shrinking after 2000. ②The glaciers in the Chenab basin have shrinked in all orientations and altitudes. Among them, S orientation glaciers has the maximum shrinkage rate, accounting for 24.35% of the total area of glacial shrinkage. The glaciers areas between 4 600~4 800 m and 4 800~5 000 m is reduced 29.93 km2 and 30.91 km2 near 23 a,accounting for 17.72% and 18.30% of the total shrinkage of the glacier area in the basin respectively. ③From 1993 to 2016, there were 28 different glaciers had advanced in the Chenab basin. ④Analysis of temperature and precipitation changes in the two meteorological stations of Shiquan river and Srinagar and CRU reanalysis data shows that the average annual temperature in the region increased significantly from 1993 to 2016 caused glacier retreat.

Key words: Glacier change    Himalayas mountains    Chenab basin    Remote sensing monitoring
收稿日期: 2018-12-19 出版日期: 2020-07-10
ZTFLH:  TP79  
基金资助: 国家重点研发计划项目(2017YFC0404302);中国科学院战略性先导科技专项(XDA19070302);中国科学院“一带一路”科技合作专项(131C11KYSB20160061)
通讯作者: 王宁练     E-mail: kouyong1013@163.com;nlwang@nwu.edu.cn
作者简介: 寇勇(1995-),男,甘肃平凉人,硕士研究生,主要从事冰冻圈变化遥感研究。E?mail:kouyong1013@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
寇勇
王宁练
陈安安
刘凯

引用本文:

寇勇,王宁练,陈安安,刘凯. 1993~2016年喜马拉雅山西段杰纳布流域冰川变化遥感监测[J]. 遥感技术与应用, 2020, 35(3): 712-722.

Yong Kou,Ninglian Wang,An’an Chen,Kai Liu. Monitoring Variation of Glaciers based on Remote Sensing Images in the Chenab Basin,Western-Himalaya,1993~2016. Remote Sensing Technology and Application, 2020, 35(3): 712-722.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2020.3.0712        http://www.rsta.ac.cn/CN/Y2020/V35/I3/712

影像编号轨道号传感器成像日期云量/%分辨率/m
PathRow
LC81490362016275LGN00149036OLI2016-10-010.8615
LC81480362013211LGN00148036OLI2013-07-3019.3115
LC81470372016277LGN00147037OLI2016-10-031.0115
LC81480372016316LGN00148037OLI2016-11-115.3415
LC81490372016275LGN00149037OLI2016-10-017.215
LC81470382016229LGN00147038OLI2016-08-1617.4915
LE71480362000248SGS00148036ETM+2000-09-042.1815
LE71490362000239SGS00149036ETM+2000-08-2610.7815
LE71470372000241SGS00147037ETM+2000-08-282415
LE71470382000289SGS00147038ETM+2000-10-150.0915
LT51480361994207ISP00148036TM1994-07-2642.7230
LT51470371993245ISP00147037TM1993-09-0227.6830
LT51470371994232ISP00147037TM1994-08-2051.8630
LT51480371993236ISP00148037TM1993-08-2445.0330
LT51470381993229ISP00147038TM1993-08-1726.1830
表1  遥感影像属性
图1  杰纳布流域概况图审图号:GS(2016)2556
图2  目视解译的冰川边界
年份冰川面积/km2数量/条时段变化面积/km2面积变化率/%年均萎缩率/%·a-1
19932 847.91±120.471 9941993~200023.58±163.340.83±5.760.12±0.82
20002 824.33±110.311 9882000~2016140.98±154.304.99±5.610.31±0.35
20162 683.35±107.892 0151993~2016164.56±161.725.78±5.840.25±0.25
表2  不同时段杰纳布流域冰川面积变化
规模1993年2000年2016年
/km2数量/条面积/km2数量/条面积/km2数量/条面积/km2
≤0.124717.80±3.2527719.93±3.0334723.03±3.68
0.1~0.5942231.53±23.69918223.81±20.50916219.55±20.34
0.5~1.0312221.68±15.27305216.54±13.37299207.90±12.92
1.0~2.0226313.45±16.30222307.79±14.79200277.69±13.59
2.0~5.0161515.14±20.39160511.42±18.59152475.80±17.92
5.0~10.064435.96±14.8664437.67±13.4561414.38±13.69
>10421 112.34±30.54421 107.15±29.47401 065.00±29.20
表3  杰纳布流域不同规模冰川的数量和面积
图3  不同规模冰川面积变化率
图4  杰纳布流域各朝向冰川数量与面积变化情况
图5  杰纳布流域不同朝向冰川面积分布及萎缩率
图6  杰纳布流域不同海拔冰川面积变化
图7  前进冰川的运动情况
图8  邻近气象站年平均气温及降水量变化
图9  杰纳布流域CRU资料年平均气温和降水量变化
1 Qin Dahe. Conspectus of Cryospheric Science[M].Beijing: Science Press,2017.
1 秦大河.冰冻圈科学概论[M].北京:科学出版社,2017.
2 Oerlemans J. Quantifying Global Warming from the Retreat of Glaciers[J]. Science, 1994, 264(5156): 243-245.
3 Shi Yafeng, Liu Shiyin. Estimation of Chinese Glacier Response to Global Warming in the 21st Century[J]. Chinese Science Bulletin,2000,45(4) :434-438.
3 施雅风,刘时银.中国冰川对21世纪全球变暖响应的预估[J]. 科学通报,2000, 45(4): 434-438.
4 Azam M F, Wagnon P, Berthier E,et al. Review of the Status and Mass Changes of Himalayan-karakoram Glaciers[J]. Journal of Glaciology, 2018, 64(243): 1-14.
5 Wang Shijin, Wen Jiahong. Characteristics, Influence of Cryosphere Disaster and Prospect of Discipline Development[J]. Bulletin of Chinese Academy of Sciences, 2020, 35(4): 523-530.
5 王世金, 温家洪. 冰冻圈灾害特征、影响及其学科发展展望[J]. 中国科学院院刊, 2020, 35(4): 523-530.
6 Wang Lei, Jiang Zongli,Liu Shiyin,et al. Characteristic of Glaciers’ Movement along Karakoram Highway[J]. Remote Sensing Technology and Application, 2019, 34(2): 190-201.
6 王磊, 蒋宗立, 中巴公路沿线冰川运动特征[J]. 遥感技术与应用, 2019, 34(2): 190-201.
7 Nie Y, Liu Q, Wang J D,et al. An Inventory of Historical Glacial Lake Outburst Floods in the Himalayas based on Remote Sensing Observations and Geomorphological Analysis[J]. Geomorphology, 2018,308: 91-106.
8 Yao Tandong, Yu Wusheng, Wu Guangjian,et al. Glacier Anomalies and Relevant Disaster Risks on Tibetan Plateau and Surroundings[J]. Chinese Science Bulletin, 2019, 64(27): 2770-2782.
8 姚檀栋, 余武生, 邬光剑,等.青藏高原及周边地区近期冰川状态失常与灾变风险[J]. 科学通报, 2019, 64(27): 2770-2782.
9 Kang Shichang, Guo Wanqin, Zhong Xinyue,et al. Changes in the Mountain Cryosphere and Their Impacts and Adaptation Measures[J]. Climate Change Research, 2020, 16(2): 143-152.
9 康世昌, 郭万钦,钟歆玥,等. 全球山地冰冻圈变化、影响与适应[J]. 气候变化研究进展, 2020, 16(2): 143-152.
10 Gardner A S, Moholdt G, Cogley J G,et al. A Geconciled Estimate of Glacier Contributions to Sea Level Rise: 2003 to 2009[J]. Science, 2013, 340(6134): 852-857.
11 Yao T D, Thompson L, Yang W,et al. Different Glacier Status with Atmospheric Circulations in Tibetan Plateau and Surroundings[J]. Nature Climate Change, 2012, 2(9): 663-667.
12 Ji Qin, Dong Jun, Liu Ruiet al. Glacier Changes in Response to Climate Change in the Himalayas in 1990-2015. Scientia Geographica Sinica,2020,40(3):486-496.[冀琴,董军,刘睿,等.1990-2015 年喜马拉雅山冰川变化的遥感监测及动因分析[J]. 地理科学,2020,40(3):486-496.]
13 Nie Y, Sheng Y W, Liu Q,et al. A Regional-scale Assessment of Himalayan Glacial Lake Changes Using Satellite Observations from 1990 to 2015[J]. Remote Sensing of Environment, 2017, 189: 1-13.
14 Bhambri R, Bolch T. Glacier Mapping: A Review with Special Reference to the Indian Himalayas[J]. Progress in Physical Geography, 2009,33(5): 672-704.
15 Brahmbhatt R M, Bahuguna I M, Rathore B P,et al. Significance of Glacio-morphological Factors in Glacier Retreat: A Case Study of Part of Chenab Basin, Himalaya[J]. Journal of Mountain Science, 2017, 14(1): 128-141.
16 Kour R, Patel N, Krishna A P. Assessment of Temporal Dynamics of Snow Cover and Its Validation with Hydro-meteorological Data in Parts of Chenab Basin, Western Himalayas[J]. Science China, 2016, 59(5): 1081-1094.
17 Burbank D W, Bookhagen B, Gabet E J,et al. Modern Climate and Erosion in the Himalaya[J]. Comptes Rendus Geoscience, 2012, 344(11-12): 610-626.
18 Guo Wanqin, Liu Shiyin, Xu Junli,et al. Monitoring Recent Surging of the Yulinchuan Glacier on North Slopes of Muztag Range by Remote Sensing[J]. Journal of Glaciology and Geocryology, 2012, 34(4): 765-774.
18 郭万钦, 刘时银, 许君利,等. 木孜塔格西北坡鱼鳞川冰川跃动遥感监测[J]. 冰川冻土, 2012, 34(4): 765-774.
19 Niu Shengming, Li Zhongqin, Huai Baojuan. Study on the Remote Sensing Image Extraction Methods in Glaciers[J]. Science and Technology of West China, 2014(8): 1-3.
19 牛生明, 李忠勤, 怀保娟. 遥感影像提取冰川信息方法研究[J]. 中国西部科技, 2014(8): 1-3.
20 Raup B, Racoviteanu A, Khalsa S J S,et al. The GLIMS Geospatial Glacier Database: A New Tool for Studying Glacier Change[J]. Global and Planetary Change, 2007, 56(1): 101-110.
21 Nuimura T, Sakai A, Taniguchi K,et al. The GAMDAM Glacier Inventory: A Quality-controlled Inventory of Asian Glaciers[J]. Cryosphere, 2015, 8(3): 849-864.
22 Mölg N, Bolch T, Rastner P,et al. A Consistent Glacier Inventory for the Karakoram and Pamir Regions derived from Landsat Data: Distribution of Debris Cover and Mapping Challenges[J]. Earth System Science Data, 2018, 10(4): 1807-1827.
23 Liu Shiyin, Yao Xiaojun, Guo Wanqin,et al. The Contemporary Glaciers in Chian based on the Second Chinese Glacier Inventory[J]. Acta Geographica Sinica, 2015, 70(1): 3-16.
23 刘时银, 姚晓军, 郭万钦,等. 基于第二次冰川编目的中国冰川现状[J]. 地理学报, 2015, 70(1): 3-16.
24 Bolch T, Menounos B, Wheate R. Landsat-based Inventory of Glaciers in Western Canada, 1985~2005[J]. Remote Sensing of Environment, 2010, 114(1): 127-137.
25 Sun Meiping, Liu Shiyin, Yao Xiaojun,et al. Glacier Changes in the Qilian Mountains in the Past Half Century: based on the Revised First and Second Chinese Glacier Inventory[J]. Acta Geographica Sinica, 2015, 70(9): 1402-1414.
25 孙美平, 刘时银, 姚晓军,等. 近50年来祁连山冰川变化——基于中国第一、二次冰川编目数据[J]. 地理学报, 2015, 70(9): 1402-1414.
26 Paul F, Kaab A, Maisch M,et al. The New Remote-sensing-derived Swiss Glacier Inventory: I. Methods[J]. Annals Of Glaciology, 2002, 34(1): 355-361.
27 Zhang Z, Liu S Y, Zhang Y,et al. Glacier Variations at Aru Co in Western Tibet from 1971 to 2016 derived from Remote-sensing Data[J]. Journal of Glaciology, 2018, 64(245): 1-10.
28 Zhang Zhen, Liu Shiyin, Wei Junfeng,et al. Mass Change of Glaciers in Mt.Qomolangma(Everest) Region from 1974 to 2010 as derived from Remote Sensing Data[J]. Remote Sensing Technology and Application, 2018, 33(4): 731-740.
28 张震,刘时银,魏俊峰,等.1974~2012年珠穆朗玛峰地区冰川物质平衡遥感监测研究[J].遥感技术与应用,2018, 33(4): 731-740.
29 Wang Ninglian, Yao Tandong, Xu Baiqing,et al. Spatiotemporal Pattern, Trend, and Influence of Glacier Change in Tibetan Plateau and Surroundings Under Global Warming[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1220-1232.
29 王宁练, 姚檀栋, 徐柏青,等. 全球变暖背景下青藏高原及周边地区冰川变化的时空格局与趋势及影响[J]. 中国科学院院刊, 2019, 34(11): 1220-1232.
30 Kulkarni A V, Karyakarte Y. Observed Changes in Himalayan Glaciers[J]. Current Science, 2014, 106(2): 237-244.
31 Zhang Wei,Wang Ninglian,Li Xiang,et al. Glacier Changes and Its Response to Climate Change in the Gilgit River Basin, Western Karakorum Mountains over the Past 20 Years[J]. Moutain Research, 2019, 37(3): 347-358.
31 张威, 王宁练, 李想,等. 近20年喀喇昆仑地区吉尔吉特河流域冰川面积变化及其对气候变化的响应[J]. 山地学报, 2019, 37(3): 347-358.
32 Zhang Zheng,Liu Shiyin,Wei Junfeng,et al. Monitoring Recent Surging of the Karayaylak Glacier in Pamir by Remote Sensing[J]. Journal of Glaciology and Geocryology, 2016, 38(1): 11-20.
32 张震, 刘时银, 魏俊锋,等. 新疆帕米尔跃动冰川遥感监测研究[J]. 冰川冻土, 2016, 38(1): 11-20.
33 Gao Xiaoqing, Tang Maocang, Feng Song. Discussion on the Relationship between Glacial Flactuation and Climate Chance[J]. Plateau Meteorology, 2000, 19(1): 9-16.
33 高晓清, 汤懋苍, 冯松. 冰川变化与气候变化关系的若干探讨[J]. 高原气象, 2000, 19(1): 9-16.
34 Yadav R R, Gupta A K, Kotlia B S,et al. Recent Wetting and Glacier Expansion in the Northwest Himalaya and Karakoram[J]. Scientific Reports, 2017, 7(6139): 1-8.
35 Xie Zichu, Liu Chaohai. Introduction to Glaciation[M]. Shanghai: Popular Science Press, 2010.
35 谢自楚, 刘潮海. 冰川学导论[M]. 上海:上海科学普及出版社, 2010.
36 Oerlemans J. Extracting a Climate Signal from 169 Glacier Records[J]. Science, 2005, 308(5722): 675-677.
37 Huntington T G. Evidence for Intensification of the Global Water Cycle: Review and Synthesis[J]. Journal of Hydrology, 2006, 319(1): 83-95.
38 Su Zhen, Liu Zongxiang, Wang Wenti, et al. Glacier Flactuations Responding to Climate Change and Forecast of Its Tendency over the Qinghai-Tibet Plateau[J]. Advance in Earth Sciences, 1999, 14(6): 607-612.
38 苏珍, 刘宗香, 王文悌,等. 青藏高原冰川对气候变化的响应及趋势预测[J]. 地球科学进展, 1999, 14(6): 607-612.
39 Wang Ninglian, Zhang Xiangsong. Moutain Glacier Fiuctuations and Clamatic Change during the Last 100 Years[J]. Journal of Glaciology and Geocryology, 1992, 14(3): 241-250.
39 王宁练, 张祥松. 近百年来山地冰川波动与气候变化[J]. 冰川冻土, 1992, 14(3): 241-250.
40 Zhang Dongqi, Xiao Cunde, Liu Weigang. Analysis on Himalayan Climate Change in 1951-2010[J]. Climate Change Research, 2012, 8(2): 110-118.
40 张东启, 效存德, 刘伟刚. 喜马拉雅山区1951~2010年气候变化事实分析[J]. 气候变化研究进展, 2012, 8(2): 110-118.
41 Pareta K,Pareta U. Climate Change Impact on Land and Natural Resource in Chamba Tehsil of Himachal Pradesh State,India[J]. The International Journal of Science and Technoledge,2014,2(4):38-48.
42 Bhutiyani M R, Kale V S, Pawar N J. Long-term Trends in Maximum, Minimum and Mean Annual Air Temperatures Across the Northwestern Himalaya During the Twentieth Century[J]. Climatic Change, 2007, 85(1-2): 159-177.
[1] 李智礼,匡文慧,张澍. 近70 a天津主城区城市土地利用/覆盖变化遥感监测与时空分析[J]. 遥感技术与应用, 2020, 35(3): 527-536.
[2] 鲁军景, 孙雷刚, 黄文江.  作物病虫害遥感监测和预测预警研究进展[J]. 遥感技术与应用, 2019, 34(1): 21-32.
[3] 王仕哲, 柯长青. 基于ALOSPALSAR的喜马拉雅山冰川流速分布及变化[J]. 遥感技术与应用, 2018, 33(5): 942-955.
[4] 胡根生,吴问天,黄文江,梁栋,黄林生. 粒子群优化的最小二乘支持向量机在小麦白粉病监测中的应用[J]. 遥感技术与应用, 2017, 32(2): 299-304.
[5] 周春艳,厉青,张丽娟,马鹏飞,陈辉,王中挺. 遥感监测2005~2015年中国NO2时空特征及分析影响因素[J]. 遥感技术与应用, 2016, 31(6): 1190-1200.
[6] 张永宏,任伟,曹庭,田伟,王剑庚,卢晶. FY-3/VIRR资料积雪多阈值综合判识方法研究[J]. 遥感技术与应用, 2015, 30(6): 1076-1084.
[7] 唐志光,王建,梁继,李朝奎,王欣. 基于MODIS的青藏高原雪线高度遥感监测[J]. 遥感技术与应用, 2015, 30(4): 767-774.
[8] 郑高强,陈芸芝,汪小钦,陈曦. 基于HJ-1卫星CCD数据的厦门海域叶绿素a浓度反演[J]. 遥感技术与应用, 2015, 30(2): 235-241.
[9] 权文婷,周辉. HJ星数据在关中冬小麦种植面积遥感监测中的应用 [J]. 遥感技术与应用, 2014, 29(6): 930-934.
[10] 陈国茜,周秉荣,胡爱军. 垂直干旱指数在高寒农区春旱监测中的应用研究[J]. 遥感技术与应用, 2014, 29(6): 949-953.
[11] 张薇,杨思全,王磊,李岩. 合成孔径雷达数据减灾应用潜力研究综述[J]. 遥感技术与应用, 2012, 27(6): 904-911.
[12] 翟孟源,徐新良,江东,姜小三. 1979~2010年乌海市煤矿开采对生态环境影响的遥感监测[J]. 遥感技术与应用, 2012, 27(6): 933-940.
[13] 于健,杨国范,王颖,王长顺. 基于MODIS数据反演阜新地区土壤水分的研究[J]. 遥感技术与应用, 2011, 26(4): 413-419.
[14] 张华伟, 鲁安新, 王丽红, 郭忠明, 张春文. 基于遥感的祁连山东部冷龙岭冰川变化研究[J]. 遥感技术与应用, 2010, 25(5): 682-686.
[15] 吴海平, 刘顺喜, 黄世存. 基于HJ-1A/B卫星CCD数据的土地宏观监测试验研究[J]. 遥感技术与应用, 2009, 24(6): 788-792.