Please wait a minute...
img

官方微信

遥感技术与应用  2020, Vol. 35 Issue (4): 911-923    DOI: 10.11873/j.issn.1004-0323.2020.4.0911
遥感应用     
对遥感在城市更新监测应用中的认知和思考
潘灼坤1,4,5(),胡月明1,2,3(),王广兴4,5,刘吼海5,6,刘江7,李波8,樊舒迪1
1.华南农业大学资源环境学院,广东 广州 510642
2.自然资源部建设用地再开发重点实验室,广东 广州 510642
3.广东省土地利用与整治重点实验室,广东 广州 510642
4.南伊利诺伊大学地理与环境资源系,美国 62901
5.广东友元国土信息工程有限公司,广东 广州 510640
6.广州市华南自然资源科学技术研究院,广东 广州 510640
7.广州市城市更新规划研究院,广东 广州 510030
8.广州市香港科大霍英东研究院,广东 广州 511458
Cognitions and Perspectives in Remote Sensing of Urban Renewal Monitoring
Zhuokun Pan1,4,5(),Yueming Hu1,2,3(),Guangxing Wang4,5,Houhai Liu5,6,Jiang Liu7,Bo Li8,Shudi Fan1
1.College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
2.Key Laboratory of Construction Land Transformation, Ministry of Natural Resources, Guangzhou 510642, China
3.Guangdong Provincial Key Laboratory of Land Use and Consolidation 510642, Guangzhou
4.Department of Geography, Southern Illinois University at Carbondale, IL, USA, 62901
5.Guangdong Youyuan Land Information Engineering Company, Guangzhou 510640
6.Guangzhou South China Natural Resources Science and Technology Research Institute, Guangzhou 510640, China
7.Guangzhou Urban Renewal Planning Institute, Guangzhou 510030, China
8.Hongkong University of Science and Technology, Fok Ying Tung Research Institute, Guangzhou 511458, China
 全文: PDF(14809 KB)   HTML
摘要:

对城市更新改造的监测是目前较新的遥感应用领域。鉴于当前城市更新领域有关的遥感监测研究现状,对城市更新中遥感监测的概念、涉及方法以及与业务应用关系等方面进行了介绍,通过简要综述城市遥感监测的研究进展,分析适用于城市更新中的遥感数据类型,给出遥感在城市更新中的应用实例,尝试论证遥感在城市更新改造中的价值和作用,填补该领域遥感应用认知上的空缺,提出遥感在该领域工作可能的发展方向和研究思路。

关键词: 遥感城市更新低效建设用地认知    
Abstract:

Currently urban renewal and transformation monitoring is a relatively new remote sensing application field. In view of current status and deficiencies in remote sensing of urban renewal, this paper introduces the basic concepts, methods and applications of remote sensing in this field. Through brief review of recent advances in remote sensing of urban monitoring, this paper interpreted the remote sensing data types suitable for urban renewal; examples of applications have been presented; for the purpose of illustrating the value of remote sensing in this field. Hopefully this paper can fill the knowledge gaps in the applications of remote sensing technology to urban renewal, and can inspire new thinking in this field. Possible future directions of remote sensing in this field are then pointed out.

Key words: Remote sensing    Urban renewal    Inefficient construction land    Cognition
收稿日期: 2019-03-14 出版日期: 2020-09-15
ZTFLH:  TP79  
基金资助: 国家重点研发计划项目(2018YFD1100801);国家自然科学基金项目(41601404);中国博士后国际交流计划项目(20170029)
通讯作者: 胡月明     E-mail: xyslz114@sima.com;yueminghugis@163.com
作者简介: 潘灼坤(1986-), 男, 广东东莞人,博士后, 主要从事土地资源遥感监测研究, E?mail: xyslz114@sima.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
潘灼坤
胡月明
王广兴
刘吼海
刘江
李波
樊舒迪

引用本文:

潘灼坤,胡月明,王广兴,刘吼海,刘江,李波,樊舒迪. 对遥感在城市更新监测应用中的认知和思考[J]. 遥感技术与应用, 2020, 35(4): 911-923.

Zhuokun Pan,Yueming Hu,Guangxing Wang,Houhai Liu,Jiang Liu,Bo Li,Shudi Fan. Cognitions and Perspectives in Remote Sensing of Urban Renewal Monitoring. Remote Sensing Technology and Application, 2020, 35(4): 911-923.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2020.4.0911        http://www.rsta.ac.cn/CN/Y2020/V35/I4/911

图1  典型的“三旧用地”:旧村庄、旧工厂、旧城镇
图2  利用深度学习语义分割对城中村建筑物单体化提取与分类
图3  SAR图像的雷达散射特性能很好地描绘建筑物轮廓边界
图4  热红外遥感影像城市地表热辐射与用地布局的关系(北京天瑞集思科技有限公司提供示例热红外航空影像)
图5  卫星遥感监测下改造片区前后土地利用与配置引起的热环境变化
图6  利用卫星遥感立体像对提取DSM构建建筑物立体模型
图7  基于无人机倾斜摄影测量的三维立体建模
图8  基于时间序列SAR影像短期变化检测:
图9  遥感影像中低效建设用地光谱特征:(a) Worldview-Ⅱ 八波段高分辨率影像(0.5 m分辨率) (b) 珠海一号高光谱影像(10 m分辨率)
图 10  基于面向对象分析的低效建设用地提取
1 Huang Ting, Zheng Rongbao, Zhang Yaqi. A Comparative Analysis on the Urban Renewal Studies in China and Foreign Countries: based on Bibliometrics[J]. City Planning Review, 2017, 41(5): 111-121.
1 黄婷, 郑荣宝, 张雅琪. 基于文献计量的国内外城市更新研究对比分析[J]. 城市规划, 2017, 41(5): 111-123.
2 Xiaobei Lü. The Role and the Impactof Urban Regeneration Planning in Urban Planning System[J]. Modern Urban Research, 2011, 26(1): 17-20.
2 吕晓蓓. 城市更新规划在规划体系中的定位及其影响[J]. 现代城市研究, 2011, 26(1): 17-20.
3 Zheng H W, Shen G Q, Wang H. A Review of Recent Studies on Sustainable Urban Renewal[J]. Habitat International, 2014, 41: 272-279.
4 Wang Shifu, Shen Shuangting. From “Three-old” Reconstruction to Urban Renewal-Thinking around the Newly Established Urban Renewal Bureau in Guangzhou[J]. Urban Planning Forum, 2015, 223: 22-27.
4 王世福, 沈爽婷. 从"三旧改造"到城市更新-广州市成立城市更新局之思考[J]. 城市规划学刊, 2015, 223: 22-27.
5 Guangzhou Urban Renewl Bureau. The Conprehensive Urban Renewal Planning of Guangzhou City (2015-2020) [R]. 2015.
5 广州市城市更新局. 广州市城市更新总体规划(2015-2020) [R]. 2015.
6 Li Jing, Feng Yinjing, Xia Ji. The Selection of Urban Land Use Transformation Path-based on the “Three-old Reform”in Guangzhou [J]. China Real Estate, 2015, 3: 36-43.
6 李菁, 冯银静, 夏冀. 城市土地利用转型的路径选择—以广州市“三旧改造”为例 [J]. 中国房地产, 2015, 3: 36-43.
7 Liu Xinping, Yan Jinming, Wang Qingri. Practical Dilemma and Rational Choice of Underused Urban Land Readjustment in China [J]. China Land Sciences, 2015, 29(1): 48-54.
7 刘新平, 严金明, 王庆日. 中国城镇低效用地再开发的现实困境与理性选择[J]. 中国土地科学, 2015, 29(1): 48-54.
8 Ministry of Land Resources. National Planning of Land Consolidation (2016-2020) [R]. 2016.
8 国土资源部. 全国土地整治规划 (2016-2020) [R]. 2016.
9 National Development and Reform Commission. National Development of Civil Space Infrastructure: Medium-to-Longterm Planning (2015-2025)[R]. 2015.
9 国家发展改革委员会. 国家民用空间基础设施中长期发展规划(2015-2025)[R]. 2015.
10 National Development and Reform Commission. National Development Planning of Geographic Information Industry (2014-2020) [R]. 2014.
10 国家发展改革委员会. 国家地理信息产业发展规划(2014-2020) [R]. 2014.
11 Wu Zhifeng, Chai Yanwei, Dang Anrong, et al. Geography Interact with Big Data: Dialogue and Reflection[J]. Geographical Research, 2015, 34 (12): 2207-2221.
11 吴志峰, 柴彦威, 党安荣, 等. 地理学碰上“大数据”:热反应与冷思考[J]. 地理研究, 2015, 34 (12): 2207-2221.
12 Du Peijun, Bai Xuyu, Luo Jieqiong, et al. Advances of Urban Remote Sensing[J]. Journal of Nanjing University of Information Science and Technology(Natural Science Edition), 2018, 10(1): 16-29.
12 杜培军, 白旭宇, 罗洁琼,等, 城市遥感研究进展[J]. 南京信息工程大学学报(自然科学版), 2018, 10(1): 16-29.
13 Wu Kaizhao, Xie Ping. Application of Remote Sensing Change Detection Technology in the “Old Buildings Reform” Project Progress Monitoring[J]. Bulletin of Surveying and Mapping, 2014, 7: 82-85.
13 吴楷钊, 谢萍. 遥感变化检测技术在“三旧”改造项目进度监测中的应用研究[J]. 测绘通报, 2014, 7: 82-85.
14 Che Feng, Lin Hui. Research on Remote Sensing Extraction of Urban Constructed Area[J]. Sciences of Surveying and Mapping, 2010, 4: 97-99.
14 车风, 林辉. 城市建设用地遥感信息提取方法研究[J]. 测绘科学, 2010, 4: 97-99.
15 Zheng Rongbao, Zhang Chunhui, Chen Meizhao. Research on Target Recognition and Secondary Development Strategy of Inefficient Industrial Land[J]. Territory and Natural Resources Study, 2014, 20(5): 20-24.
15 郑荣宝, 张春慧, 陈美招. 低效产业用地目标识别与二次开发策略研究[J]. 国土与自然资源研究, 2014, 20(5): 20-24.
16 Zhong Yun, Cao Yan. Analyzing the Benefits of Urban Renewal for the Renovated Regions: A Case Study of North Bay Culture Wharf in Guangzhou[J]. Urban Insight, 2013, 1: 133-142.钟韵, 曹艳. 三旧改造区域的城市更新效益分析--以广州北岸文化码头区域为例[J]. 城市观察, 2013, 1: 133-142.
17 Li Deren, Tong Qingxi, Li Rongxing, et al. Current Issues in High-resolution Earth Observation Technology[J]. Science China Earth Science, 2012, 55: 1043–1051.李德仁, 童庆禧, 李荣兴,等. 高分辨率对地观测的若干前沿科学问题. 中国科学:地球科学版, 2012, 42(6): 805-813.
18 Fan Shudi, Hu Yueming, Liu Zhenhua. A Novel Method for Object-oriented Extraction of Uran Buildings[J]. Journal of South China Normal University(Natural Science Edition), 2015, 6: 91-97.
18 樊舒迪, 胡月明, 刘振华. 一种新的面向对象城市建筑物信息提取方法研究[J]. 华南师范大学学报(自然科学版), 2015, 6: 91-97.
19 Bachofer F, Braun A, Adamietz F, et al. Building Stock and Building Typology of Kigali, Rwanda[J]. Data, 2019, 4, 105. doi:10.3390/data4030105.
doi: 10.3390/data4030105
20 Wang Caiyan, Wang Ailing, Wang Jieyong, et al. Land Use Information Extraction in the Inner City of Beijing based on Object-oriented Classification Method[J]. Journal of Natural Resources, 2015, 30(4): 705-714.
20 王彩艳, 王瑷玲, 王介勇,等. 基于面向对象的北京市区城市内部用地信息提取[J]. 自然资源学报, 2015, 30(4): 705-714.
21 Huang B, Zhao B, Song Y, Urban Land-use Mapping Using a Deep Convolutional Neural Network with High Spatial Resolution Multispectral Remote Sensing Imagery[J]. Remote Sensing of Environment, 2018, 214:73-86.
22 Liang Zhe, Ning Xiaogang, Zhang Hanchao, et al. A Method of New Construction Land Extraction based on Improved U-net Network[J]. Remote Sensing Information, 2020,35(3):92-98.
22 梁哲,宁晓刚,张翰超,等.一种改进U-net网络的新增建设用地提取方法[J].遥感信息,2020,35(3):92-98.
23 Dong Yunya, Zhang Qian.A Survey of Depth Semantic Feature Extraction of High Resolution Remote Sensing Images based on CNN [J].Remote Sensing Technology and Application, 2019, 34(1): 1-11.
23 董蕴雅,张倩.基于 CNN 的高分遥感影像深度语义特征提取研究综述[J]. 遥感技术与应用, 2019, 34(1): 1-11.
24 Zhu X, Tuia D, Mou L, et al. Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources[J]. IEEE Geoscience and Remote Sensing Magazine, 2017, 5(4): 8-36.
25 Pan Z, Xu J, Guo Y, et al. Deep Learning Segmentation and Classification for Urban Villages Using Worldview Satellite Image based on U-Net[J].Remote Sensing, 2020, 12, 1574; doi:10.3390/rs12101574.
doi: 10.3390/rs12101574
26 Weng Q. Remote Sensing of Impervious Surfaces in the Urban Areas: Requirements, Methods, and Trends[J]. Remote Sensing of Environment, 2012, 117: 34-49.
27 Zhang H, Lin H, Li Y, Zhang Y, Fang C. Mapping Urban Impervious Surface with Dual-polarimetric SAR Data: An Improved Method[J]. Landscape and Urban Planning, 2016, 151: 55-63.
28 Esch T, Thiel M, Schenk A, et al. Delineation of Urban Footprints from TerraSAR-X Data by Analyzing Speckle Characteristics and Intensity Information [J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(2): 905-916.
29 Tupin F, Roux M. Detection of Building Outlines based on the Fusion of SAR and Optical Features[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2003, 58(1-2): 71-82.
30 Zhou Shanghui. The Method of Estimating Population in City Using Remote Sensing[J]. Remote Sensing of Environment China, 1991, 6(3): 239-243.
30 邹尚辉. 城市人口的遥感估算方法[J]. 环境遥感, 1991, 6(3): 239-243.
31 Lu D, Weng Q. Use of Impervious Surface in Urban Land-use Classification[J]. Remote Sensing of Environment, 2006, 102(1-2): 146-160.
32 Buyantuyev A, Wu J. Urban Heat Islands and Landscape Heterogeneity: Linking Spatiotemporal Variations in Surface Temperatures to Land-cover and Socioeconomic Patterns[J]. Landscape Ecology, 2010, 25: 17-33.
33 Claudia K, Stefan D. Thermal Infrared Remote Sensing: Sensors, Methods, Applications[M]. Berlin: Springer, 2013.
34 Adrian C, Jesús P, Jose-Luis S, et al. UBRISTES: UAV-based Building Rehabilitation with Visible and Thermal Infrared Remote Sensing [C]∥ Robot 2015: Second Iberian Robotics Conference, 2015: 245-256.
35 Chen X L, Zhao H M, Li P X, Yin Z Y. Remote Sensing Image-based Analysis of the Relationship between Urban Heat Island and Land Use/Cover Changes[J]. Remote Sensing of Environment, 2006, 104: 133-146.
36 Lo C P, Quattrochi D A, Luvall J. C. Application of High-resolution Thermal Infrared Remote Sensing and GIS to Assess the Urban Heat Island Effect[J]. International Journal of Remote Sensing, 1997, 18: 287-304.
37 Pan Z,Hu Y, Wang G,et al.Characterizing Urban Redevelopment Process by Quantifying Thermal Dynamic and Landscape Analysis[J]. Habitat International, 2019 (86): 61-70.
38 Zhou W, Huang G, Cadenasso M L. Does Spatial Configuration Matter? Understanding the Effects of Land Cover Pattern on Land Surface Temperature in Urban Landscapes[J]. Landscape and Urban Planning, 2011, 102: 54-63.
39 Tang Fei, Xu Hanqiu. The Relationship between Urban Reconstruction and Urban Heat Island Effect based on Remote Sensing Technology: Cangxia District of Fuzhou City, China[J]. Scientia Geographica Sinica, 2011, 31(10): 1228-1234.
39 唐菲, 徐涵秋. 旧城改造与城市热岛效应关系的遥感研究—以福州市苍霞片区为例[J]. 地理科学, 2011, 31(10): 1228-1234.
40 Xu Hanqiu, Chen Benqing. An Image Processing Technique for the Study of Urban Heat Island Changes Using Different Seasonal Remote Sensing Data[J]. Remote Sensing Technology and Application, 2003, 18(3): 129-133.
40 徐涵秋. 陈本清. 不同时相的遥感热红外图像在研究城市热岛变化中的处理方法[J]. 遥感技术与应用, 2003, 18(3): 129-134.
41 Zha Yong. A Study on Remote Sensing Methods in Estimating Urban Built-up Volume Ratio based on Aerial Photos[J]. Progress in Geography, 2001, 4: 378-383.
41 查勇. 测定城市建筑容积率的遥感方法研究[J]. 地理科学进展, 2001, 4: 378-383.
42 Li Jinye, Zhang Lei, Wu Bingfang, et al. Study on Extracting Building Density and Floor Area Ratio based on High Resolution Data[J]. Remote Sensing Technology and Application, 2007, 3: 309-313.李锦业, 张磊, 吴炳方, 等. 基于高分辨率遥感影像的城市建筑密度和容积率提取方法研究[J]. 遥感技术与应用, 2007, 3: 309-313.
43 Li Z, Zhu Q, Gold C. Digital Terrain Modeling: Principles and Methodology[M]. Boca Raton: CRC Press, 2005.
44 Mu Lina, Li Fahong. On the Generation Technology of City Digital Surface Model and Application[J]. Journal of Shaanxi Normal University (Natural Science Edition), 2008, 36: 117-120.
44 穆利娜, 李发红. 城市DSM的获取技术与应用[J]. 陕西师范大学学报(自然科学版), 2008, 36: 117-120.
45 Fu Qiankun, Wu Bo, Wang Xiaoqin, et al. Building Extraction and Its Height Estimation over Urban Area based on Morphological Building Index[J]. Remote Sensing Technology and Application, 2015, 30(1): 148-154.
45 付乾坤,吴波,汪小钦,等. 基于形态学建筑物指数的城市建筑物提取及高度估算[J]. 遥感技术与应用, 2015, 30(1): 148-154.
46 Liu Xiaolong. Building Height Information Extracting Technique based on Time Series High Resolution InSAR [D]. Fuxin: Liaoning Technical University, 2013.
46 刘晓龙. 基于时间序列高分辨率InSAR建筑物高度信息搨取[D]. 阜新:辽宁工程技术大学, 2013.
47 Pan Guiying, Li Zhouyi, Li Song. Research on High-rise Statistics Method based on LiDAR DSM and Contour Analysis[J]. Urban Geotechnical Investigation and Surveying, 2017, 4: 105-107.
47 潘桂颖, 李佐宇, 李颂. 基于LiDAR DSM和等值线分析的高楼统计方法研究[J]. 城市勘测, 2017, 4: 105-107.
48 Zhuo Li, Huang Xinrui, Wang Fang, et al. A 3-D Building Reconstruction Method based on Stereo Image and High Spatial Resolution Images[J]. Remote Sensing Technology and Application, 2013, 28(6): 1062-1068.
48 卓莉, 黄信锐, 王芳,等. 基于高空间分辨率与立体像对遥感数据的建筑物三维信息提取[J]. 遥感技术与应用, 2013, 28(6): 1062-1068.
49 Huang Yan, Ding Cong, He Lu’e. Application of Oblique Photogrammetry in Old City Reconstruction Project[J]. Hans Journal of Civil Engineering, 2018, 7(3), 381-388.黄炎, 丁璁, 何鲁鄂. 倾斜摄影测量技术在旧城改造工程中的应用[J]. 土木工程, 2018, 7(3): 381-388.
50 Chen Qi, Chen Hang. Study on the Application of Unmanned Aerial Vehicle Tilt Photogrammetry in the Survey of Urban Renewal Basic Data [J]. Intelligent City, 2018,4(11):12-13.
50 陈琦,陈航.无人机倾斜摄影测量技术在城市更新基础数据调查工作中的应用研究[J]. 智能城市, 2018,4(11): 12-13.
51 Pan Z, Hu Y, Wang G. Detection of Short-term Urban Land Use Changes by Combining SAR Time Series Images and Spectral Angle Mapping[J]. Frontiers of Earth Science, 2019(2):1-15.
52 Qi Z, G-O Yeh A, Li X, et al. Monthly Short-term Detection of Land Development Using RADARSAT-2 Polarimetric SAR Imagery[J]. Remote Sensing of Environment, 2015, 164: 179-196.
53 Xiao P, Zhang X, Wang D, et al. Change Detection of Built-up Land: A Framework of Combining Pixel-based Detection and Object-based Recognition[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 119: 402-414.
54 Hussain M, Chen D, Cheng A, et al. Change Detection from Remotely Sensed Images: From Pixel-based to Object-based Approaches[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 80: 91-106.
55 Xiao Liangming, Chen Jianzhong. Application of UAV Aerial Survey Technology in Land Resources Management[J]. Journal of Geoinformatics, 2017, 42(5): 96-99.
55 肖亮明, 陈建忠. 无人机航测技术在国土资源管理中的应用[J]. 测绘地理信息, 2017, 42(5): 96-99.
56 Ruiz L A, Recio J A, Fernández-Sarría A, et al. A Feature Extraction Software Tool for Agricultural Object-based Image Analysis[J].Computers and Electronics in Agriculture, 2011, 76: 284-296.
57 Hermosilla T, Ruiz L A, Recio J A, et al. Assessing Contextual Descriptive Features for Plot-based Classification of Urban Areas[J]. Landscape and Urban Planning, 2012, 106: 124-137.
58 Zhao Yunhan, Chen Gangqiang, Chen Guangliang, et al.Integrating Multi-source Bigdata to Extract Buildings of Urban Villages: A Case Sutdy of Tianhe District, Guangzhou[J]. Geography and Geo-information Science, 2018, 34(5): 7-13.
58 赵云涵, 陈刚强, 陈广亮, 等, 耦合多源大数据提取城中村建筑物——以广州市天河区为例, 地理与地理信息科学, 2018, 34(5): 7-13.
59 Liu X, He J, Yao Y, et al. Classifying Urban Land Use by Integrating Remote Sensing and Social Media Data[J]. International Journal of Geographical Information Science. 2017, 31(8):1675-1696.
60 Han Peng, Gong Jianya, Li Zhilin, et al. Selection of Optimal Scale in Remotely Sensed Image Classification[J]. Journal of Remote Sensing, 2010, 14(3): 507-518.
60 韩鹏, 龚健雅, 李志林, 等. 遥感影像分类中的空间尺度选择方法研究[J]. 遥感学报, 2010, 14(3): 507-518.
61 Patino J E, Duque J C. A Review of Regional Science Applications of Satellite Remote Sensing in Urban Settings[J]. Computers, Environment and Urban Systems, 2013,37: 1-17.
62 Bennett M M, Smith L C, Advances in Using Multitemporal Night-time Lights Satellite Imagery to Detect, Estimate, and Monitor Socioeconomic Dynamics[J], Remote Sensing of Environment, 2017, 192:176-197.
[1] 严欣荣,官凤英. 竹资源遥感监测研究进展[J]. 遥感技术与应用, 2020, 35(4): 731-740.
[2] 杨瑞,祁元,苏阳. 深度学习U-Net方法及其在高分辨卫星影像分类中的应用[J]. 遥感技术与应用, 2020, 35(4): 767-774.
[3] 王卓,闫浩文,禄小敏,冯天文,李亚珍. 一种改进U-Net的高分辨率遥感影像道路提取方法[J]. 遥感技术与应用, 2020, 35(4): 741-748.
[4] 连喜红,祁元,王宏伟,张金龙,杨瑞. 基于面向对象的青海湖环湖区居民地信息自动化提取[J]. 遥感技术与应用, 2020, 35(4): 775-785.
[5] 韩天,潘小多,王旭峰,黄广辉,韦海宁. 遥感资料在WRF-Chem沙尘模拟中的应用[J]. 遥感技术与应用, 2020, 35(4): 808-819.
[6] 魏石梅, 潘竟虎, 妥文亮. 2015年中国PM2.5浓度遥感估算与时空分布特征[J]. 遥感技术与应用, 2020, 35(4): 845-854.
[7] 李智礼,匡文慧,张澍. 近70 a天津主城区城市土地利用/覆盖变化遥感监测与时空分析[J]. 遥感技术与应用, 2020, 35(3): 527-536.
[8] 史姝姝,匡文慧,董斯齐. 21世纪以来西安城乡梯度土地覆盖变化及对城市热岛影响时空特征[J]. 遥感技术与应用, 2020, 35(3): 537-547.
[9] 李净,温松楠. 基于3种机器学习法的太阳辐射模拟研究[J]. 遥感技术与应用, 2020, 35(3): 615-622.
[10] 虞瑶,苏红军,姚文静. 基于Boosting的高光谱遥感切空间协同表示集成学习方法[J]. 遥感技术与应用, 2020, 35(3): 634-644.
[11] 马彩虹,关琳琳,陈甫,王大成,刘建波. 基于内容的遥感图像变化信息检索概念模型设计[J]. 遥感技术与应用, 2020, 35(3): 685-693.
[12] 岳昂,曾庆伟,王怀警. 于桥水库蓝藻水华遥感长时序监测研究[J]. 遥感技术与应用, 2020, 35(3): 694-701.
[13] 谷祥辉,张英,桑会勇,翟亮,李少军. 基于哨兵2时间序列组合植被指数的作物分类研究[J]. 遥感技术与应用, 2020, 35(3): 702-711.
[14] 寇勇,王宁练,陈安安,刘凯. 1993~2016年喜马拉雅山西段杰纳布流域冰川变化遥感监测[J]. 遥感技术与应用, 2020, 35(3): 712-722.
[15] 张平,孙强强,张亚萍,孙丹峰,刘顺喜. 基于宽波段遥感光谱混合分解的干旱区土地退化监测评价理论和技术方法探讨[J]. 遥感技术与应用, 2020, 35(2): 497-508.