Please wait a minute...
img

官方微信

遥感技术与应用  2020, Vol. 35 Issue (4): 924-933    DOI: 10.11873/j.issn.1004-0323.2020.4.0924
遥感应用     
中亚地区植被净初级生产力时空动态及其与气候因子关系
刘婵1,2(),刘冰1(),赵文智1,朱钊岑1,2,司瑞1,2
1.中国科学院西北生态环境资源研究院 中国生态系统研究网络临泽内陆河流域研究站,中国科学院内陆河流域生态水文重点实验室,甘肃 兰州 730000
2.中国科学院大学,北京 100049
Temporal-Spatial Variation Analysis of Net Primary Productivity and its Relationship with Climate in Central Asia
Chan Liu1,2(),Bing Liu1(),Wenzhi Zhao1,Zhaocen Zhu1,2,Rui Si1,2
1.Linze Inland River Basin Research Station,Chinese Ecosystem Network Research,Key Laboratory of Ecohydrology of Inland River Basin,Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
2.University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(4855 KB)   HTML
摘要:

植被净初级生产力(Net Primary Productivity,NPP)及其对气候变化的响应是全球变化的核心研究内容之一,研究中亚地区NPP的时空格局变化对理解植被—环境的作用机理以及应对全球变化具有重要的意义。基于MOD17A3数据集、气象数据结合GIS分析方法研究中亚地区2000~2014年的植被NPP时空动态特征及其与气候因子的关系。结果表明:①中亚地区空间上NPP的变化范围在0~874 gC/m2·a之间,平均值为151.90 gC/m2·a,NPP年总量平均值为482.41TgC (1 Tg=1012 g),NPP平均值与总量均呈现出下降趋势;②中亚地区NPP的高值区主要分布在高纬度地区和东南部高山地区,中部和南部荒漠区则为NPP的低值区;③中亚地区2000~2014年间NPP在空间上总体呈现下降趋势,达到显著下降的区域总体面积的39.89%。NPP呈下降趋势的区域主要集中在哈萨克斯坦的大部分区域,不同分区内以典型草原区最为显著;④中亚地区NPP受降水量的影响作用高于气温,荒漠草原区、典型草原区以及荒漠区主要受到降水量的控制,高山草甸区与高山林地区则受到降水和气温的共同作用。

关键词: 中亚植被净初级生产力时空动态生态分区气候因子    
Abstract:

The Net Primary Productivity (NPP) of vegetation and its response to climate change is one of the key areas in research of global change. The study on spatial and temporal changes of NPP in central Asia is important to understand the mechanism of vegetation-environment action and to cope with global change. Therefore, based on the MOD17A3 dataset and meteorological data and GIS analysis method, this paper is intended to analyze the spatial pattern, temporal variation and the driving factors to NPP in Central Asia during 2000~2014. The results shows that: ①the spatial variation of NPP in Central Asia is ranged from 0 to 874 gC/m2·a, with an average of 151.90 gC/m2·a. The average annual total NPP is 482.41TgC (1 Tg=1012 g), and both the average NPP and total NPP showed a decrease trend. ②The average NPP was higher in southeastern alpine regions and high latitudes areas than in central and southern desert areas in Central Asia. ③From 2000 to 2014, the annual NPP in central Asia showed a decrease trend with a rate of -2.05 gC/m2·a2, covering 39.89% of the region with significant reduction. The areas in which NPP decreased were mainly distributed in Kazakhstan, with typical steppe zone being the most significant in five ecological zones. ④The effect of precipitation on NPP in Central Asia was stronger than that of temperature. Precipitation influenced NPP of typical steppe,desert and desert steppe more seriously, while alpine meadow and alpine forest were jointly affected by precipitation and temperature.

Key words: Central Asia    Net primary productivity    Temporal-spatial pattern    Ecological zones    Climatic factors
收稿日期: 2019-03-21 出版日期: 2020-09-15
ZTFLH:  TP79  
基金资助: 中国科学院战略性先导科技专项(XDA2003010102);国家自然科学基金项目(41771038)
通讯作者: 刘冰     E-mail: liuchan16@mails.ucas.ac.cn;liubing@lzb.ac.cn
作者简介: 刘婵(1993-),女,陕西榆林人,博士研究生,主要从事遥感生态应用研究。E?mail:liuchan16@mails.ucas.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘婵
刘冰
赵文智
朱钊岑
司瑞

引用本文:

刘婵,刘冰,赵文智,朱钊岑,司瑞. 中亚地区植被净初级生产力时空动态及其与气候因子关系[J]. 遥感技术与应用, 2020, 35(4): 924-933.

Chan Liu,Bing Liu,Wenzhi Zhao,Zhaocen Zhu,Rui Si. Temporal-Spatial Variation Analysis of Net Primary Productivity and its Relationship with Climate in Central Asia. Remote Sensing Technology and Application, 2020, 35(4): 924-933.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2020.4.0924        http://www.rsta.ac.cn/CN/Y2020/V35/I4/924

图1  研究区地理位置及生态地理分区图
含义含义
65535观测范围以外的填充值65531永久性湿地/淹没沼泽地
65534常年被盐、内陆水体覆盖65530城市、建筑物
65533裸地、稀疏植被覆盖(岩石、苔原、沙漠)65529未分类像元
65532常年性积雪或冰覆盖
表1  MODIS NPP数据特殊值说明
图2  中亚地区2000-2014年NPP空间分布图
生态分区类型NPP均值/gC/m2·aNPP总量/Tg·a-1NPP总量贡献比例/%面积比例/%
典型草原区(STE)201.28169.8035.3121.54
荒漠草原区(SED)130.39110.6823.0221.87
荒漠区(DES)85.4580.4716.7441.51
高山林地区(FOR)234.8746.719.715.61
高山草甸区(ALM)220.0873.1715.229.47
表2  不同生态分区NPP均值、NPP总量及其比例
图3  中亚不同生态分区NPP频度分布图
图4  中亚2000~2014年NPP均值及总量年际变化
图5  中亚2000~2014年NPP变化趋势及其显著性
高山草甸区(ALM)荒漠草原区(SED)荒漠区(DES)高山林地区(FOR)典型草原区(STE)总体
显著下降面积(104 km2)5.0142.9730.973.9843.48126.41
比例/%15.0345.2832.9620.0151.5039.94
显著上升面积(104 km2)1.090.551.000.450.213.31
比例/%3.280.581.072.270.251.05
表3  不同生态分区年际NPP变化类型面积比例
图6  中亚2000~2014年不同生态分区NPP变化趋势均值
图7  中亚地区2000~2014年NPP与降水量、气温的偏相关系数及各分区平均值
图8  不同生态分区内NPP与气象因子的响应关系(Rp和Rt分别代表NPP与降水量和气温的偏相关系数)
象限相关性典型草原区(STE)荒漠草原区(SED)荒漠区(DES)高山草甸区(ALM)高山林地区(FOR)
与降水、气温均正相关/%67.4667.0864.0058.5952.91
与降水负相关、与气温正相关/%1.003.853.3917.5213.45
与降水、气温均负相关/%0.531.722.309.669.37
与降水正相关、与气温负相关/%31.0227.3530.3114.2324.26
表4  不同生态分区NPP与降水量( Rp) 、温度( Rt) 的相关系数在各象限分布比例
1 Chen Fahu, Huang Wei, Jin Liya, et al. Spatial-temporal Precipitation Variations in the Arid Central Asia in the Context of Global Warming[J]. Science China Earth Science, 2011, 41(11):1647-1657.
1 陈发虎, 黄伟, 靳立亚, 等. 全球变暖背景下中亚干旱区降水变化特征及其空间差异[J]. 中国科学:地球科学, 2011, 41(11):1647-1657.
2 Lioubimtseva E, Cole R, Adams J M, et al. Impacts of Climate and Land-cover Changes in Arid Lands of Central Asia [J]. Journal of Arid Environments, 2005, 62(2):285-308.
3 Puigdefábregas J. Ecological Impacts of Global Change on Drylands and Their Implications for Desertification [J]. Land Degradation & Development, 2015, 9(5):393-406.
4 Zhu Wenquan, Pan Yaozhong, Long Zhonghua, et al.Estimating Net Primary Productivity of Terrestrial Vegetation Based on GIS and RS: A Case Study in Inner Mongolia, China [J]. Journal of Remote Sensing, 2004, 9(3):300-307.
4 朱文泉, 潘耀忠, 龙中华,等. 基于GIS和RS的区域陆地植被NPP估算——以中国内蒙古为例[J]. 遥感学报, 2005, 9(3):300-307.
5 Wei Li, Zhao Jun, Pan Jinghu, et al. A Research of Net Primary Productivity Model of Grassland based on MODIS Data in the Loess Plateau of China [J]. Remote Sensing Technology & Application, 2009, 24(5):660-664.
5 韦莉, 赵军, 潘竟虎, 等. 基于MODIS数据的黄土高原草地净初级生产力的估算研究[J]. 遥感技术与应用, 2009, 24(5):660-664.
6 Zhou Kefa, Zhang Qing, Chen Xi, et al. Characteristics and Trends of Ecological Environment Change in Arid Areas of Central Asia [J]. Science China Earth Science, 2006, 36(Z1):133-139.
6 周可法, 张清, 陈曦,等. 中亚干旱区生态环境变化的特点和趋势 [J]. 中国科学:地球科学, 2006, 36(Z1):133-139.
7 Moleele N, Ringrose S, Arnberg W, et al. Assessment of Vegetation Indexes Useful for Browse (Forage) Prediction in Semi-Arid Rangelands [J]. International Journal of Remote Sensing, 2001, 22(5):741-756.
8 Liu Kejian, Yan Min, Feng Qi. Forest Carbon and Water Fluxes Simulation Using Multi-layer Soil Parameters Assimilation [J]. Remote Sensing Technology and Application, 2019, 34(5):950-958.
8 刘克俭, 闫敏, 冯琦. 多层土壤观测数据同化的森林碳、水通量模拟 [J]. 遥感技术与应用, 2019, 34(5):950-958.
9 Parton W J. Observation and Modeling of Biomass and Soil Organic Matter Dynamics for the Grassland Biome Worldwide [J]. Global Biogeochemical Cycles, 1993, 7(4):785-809.
10 Raich J W, Rastetter E B, Melillo J M, et al. Potential Net Primary Productivity in South America: Application of a Global Model[J]. Ecological Applications, 1991, 1(4):399-429.
11 Fensholt R, Sandholt I, Rasmussen M S, et al. Evaluation of Satellite based Primary Production Modelling in the Semi-Arid Sahel [J]. Remote Sensing of Environment, 2006, 105(3):173-188.
12 Feng Ailin,Wu Jinwen,Meng Ying, et al. Research on Spatial Distribution of Carbon Source/Sink of Liaoning Province based on MODIS GPP Data Products [J]. Remote Sensing Technology and Application, 2019, 34(4):857-864.
12 冯艾琳, 武晋雯, 孟莹, 等. 基于MODIS GPP数据产品的辽宁省碳源/汇空间格局分布研究 [J]. 遥感技术与应用, 2019, 34(4):857-864.
13 Niu Zhongen, Yan Huimin, Chen Jingqing, et al. Comparison of Crop Gross Primary Productivity Estimated with VPM Model and MOD17 Product in Field Ecosystem of China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(4):191-198.
13 牛忠恩, 闫慧敏, 陈静清, 等. 基于VPM与MOD17产品的中国农田生态系统总初级生产力估算比较 [J]. 农业工程学报, 2016, 32(4):191-198.
14 Li Chaofan, Luo Geping, Li Junli, et al. Net Primary Productivity and Actual Evapotranspiration of Central Asia in Recent 20 Years[J]. Arid Land Geography, 2012, 35(6):919-927.
14 李超凡, 罗格平, 李均力, 等. 近20a中亚净初级生产力与实际蒸散发特征分析 [J]. 干旱区地理, 2012, 35(6):919-927.
15 Zhang Jiancai, Zhang Li, Zheng Yi, et al. Simulation of Vegetation Net Primary Productivity and Evapotranspiration based on LPJ Model in Central Asia [J]. Pratacultural Science, 2015, 32(11):1721-1729.
15 张建财, 张丽, 郑艺, 等. 基于LPJ模型的中亚地区植被净初级生产力与蒸散模拟. [J] 草业科学, 2015, 32(11):1721-1729.
16 Zhu Shihua, Yan Yan, Shao Hua, et al. The Responses of the Net Primary Productivity of the Dryland Ecosystems in Central Asia to the CO2 and Climate Changes during the Past 35 Years [J]. Journal of Natural Resources, 2017, 32(11):1844-1856.
16 朱士华, 艳燕, 邵华, 等. 1980-2014年中亚地区植被净初级生产力对气候和CO2变化的响应. 自然资源学报, 2017, 32(11):1844-1856.
17 Yang Jianmei. Information about Central Asia Five countries [J]. Central Asia Information, 2005: 22-25[杨建梅. 中亚五国概况 [J]. 中亚信息, 2005: 22-25.]
18 Chen Xi, Jiang Fengqing, Wang Yajun, et al. Characteristics of the Eco-Geographical Pattern in Arid Land of Central Asia [J]. Arid Zone Research, 2013, 30(3):385-390.
18 陈曦, 姜逢清, 王亚俊,等. 亚洲中部干旱区生态地理格局研究 [J]. 干旱区研究, 2013, 30(3):385-390.
19 Li Dengke, Fan Jianzhong, Wang Juan, et al. Variation Characteristics of Vegetation Net Primary Productivity in Shaanxi Province based on MO17A3 [J]. Chinese Journal of Ecology, 2011, 30(12):2776-2782.
19 李登科, 范建忠, 王娟, 等. 基于MOD17A3的陕西省植被NPP变化特征 [J]. 生态学杂志, 2011, 30(12):2776-2782.
20 Song Yi, Ma Mingguo. Variation of AVHRR NDVI and its Relationship with Climate in Chinese Arid and Cold Regions [J]. Journal of Remote Sensing, 2008, 12(3):499-505.
20 宋怡, 马明国. 基于GIMMS AVHRR NDVI数据的中国寒旱区植被动态及其与气候因子的关系 [J]. 遥感学报, 2008, 12(3):499-505.
21 Zhu Wenquan, Chen Yunhao, Xu Dan, et al. Advances in Terrestrial Net Primary Productivity (NPP) Estimation Model [J]. Chinese Journal of Ecology, 2005, 24(3): 296-300.
21 朱文泉, 陈云浩, 徐丹,等. 陆地植被净初级生产力计算模型研究进展 [J]. 生态学杂志, 2005, 24(3): 296-300.
22 Ma Chunlin. The Study on Estimation of Vegetation NPP of Xiaerxili Nature Protection Area based on RS [J]. Remote Sensing Technology & Application, 2008, 23(3):323-315.
22 马春林. 基于RS与GIS的夏尔希里自然保护区植被NPP估测研究[J]. 遥感技术与应用, 2008, 23(3):323-327.
23 Zhou Yu. Assessing the Spatial and Temporal Dynamics of Vegetation Degradation and Water Use Efficiency in Central Asian Dryland[D]. Beijing: The University of Chinese Academy of Sciences, 2015.
23 周宇. 中亚干旱区植被退化及水分利用特征时空格局分析[D]. 北京: 中国科学院大学, 2015.
24 Zhang G, Biradar C M, Xiao X, et al. Exacerbated Grassland Degradation and Desertification in Central Asia during 2000~2014[J]. Ecological Applications a Publication of the Ecological Society of America, 2018, 28(2):442.
25 Mikhailov V N, Magritsky D V, Kravtsova V I, et al. The Response of River Mouths to Large-scale Variations in Sea Level and River Runoff: Case Study of Rivers Flowing into the Caspian Sea [J]. Water Resources, 2012, 39(1):11-43.
26 Zhang M, Lal R, Zhao Y, et al. Estimating Net Primary Production of Natural Grassland and its Spatial-temporal Distribution in China [J]. Science of the Total Environment, 2016, 553:184-195.
27 Liu Yuzhi, Wu Chuqiao, Jia Rui, et al. An Overview of the Influence of Atmospheric Circulation on the Climate in Arid and Semi-arid Region of Central and East Asia [J]. Science China Earth Sciences, 2018, 48(9):1141-1152.
27 刘玉芝, 吴楚樵, 贾瑞, 等. 大气环流对中东亚干旱半干旱区气候影响研究进展[J]. 中国科学:地球科学, 2018, 48(9):1141-1152.
28 Piao S L, Fang J Y, Chen A P. Seasonal Dynamics of Terrestrial Net Primary Production in Response to Climate Changes in China [J]. Acta Botanica Sinica, 2003, 45(3):269-275.
29 Li Xiaorong, Gao Hui, Han Lipu, et al. Spatio-temporal Variations in Vegetation NPP and the Driving Factors in Taihang Mountain Area [J]. Chinese Journal of Eco-Agriculture, 2017, 25(4):498-508.
29 李晓荣, 高会, 韩立朴,等. 太行山区植被NPP时空变化特征及其驱动力分析 [J]. 中国生态农业学报, 2017, 25(4):498-508.
30 Maosheng Z, Steven W R. Drought-induced Reduction in Global Terrestrial Net Primary Production from 2000 through 2009[J]. Science, 2010, 329(5994):940-943.
31 Zhang T, Peng J, Liang W, et al. Spatial-temporal Patterns of Water Use Efficiency and Climate Controls in China's Loess Plateau during 2000~2010[J]. Science of the Total Environment, 2016, 565:105-122.
32 Wo Xiao, Wu Liangcai, Zhang Jiping, et al. Estimation of Net Primary Production in the Three-River Headwater Region Using CASA Model[J]. Journal of Arid Land Resources & Environment, 2014, 28(9):45-50.
32 沃笑, 吴良才, 张继平, 等. 基于CASA模型的三江源地区植被净初级生产力遥感估算研究 [J]. 干旱区资源与环境, 2014, 28(9):45-50.
33 Yuan Wenping, Cai Wenwen, Liu Dan, et al.Satellite-based Vegetation Production Models of Terrestrial Ecosystem: An Overview[J]. Advances in Earth Science, 2014, 29(5): 541-550.
33 袁文平, 蔡文文, 刘丹,等.陆地生态系统植被生产力遥感模型研究进展[J]. 地球科学进展, 2014, 29(5):541-550.
34 Sun Qingling, Li Baolin, Li Fei, et al. Review on the Estimation of Net Primary Productivity of Vegetation in the Three-River Headwater Region, China[J]. Acta Geographica Sinica, 2016, 71(9):1596-1612.
34 孙庆龄, 李宝林, 李飞,等. 三江源植被净初级生产力估算研究进展[J]. 地理学报, 2016, 71(9):1596-1612.
[1] 李嘉玲, 董东林, 林刚, 汪箫悦, 王健, 吴朝阳. 基于NDVI数据的江苏省植被物候变化及其影响因子分析[J]. 遥感技术与应用, 2019, 34(2): 367-376.
[2] 包刚,包玉龙,阿拉腾图娅,包玉海,覃志豪,王牧兰,周义. 1982~2011年蒙古高原植被物候时空动态变化[J]. 遥感技术与应用, 2017, 32(5): 866-874.
[3] 刘庆生,刘高焕,黄翀,吴春生,荆鑫. 现代黄河三角洲类圆形植被斑块时空动态遥感分析[J]. 遥感技术与应用, 2016, 31(2): 349-358.
[4] 周夏飞,朱文泉,马国霞,张东海,郑周涛. 稀土矿开采导致的植被净初级生产力损失遥感评估—以江西省赣州市为例[J]. 遥感技术与应用, 2016, 31(2): 307-315.
[5] 孙力炜,张勃,侯春梅,迟秀丽,贺郝钰. 祁连山区植被净初级生产力的空间变化特征分析[J]. 遥感技术与应用, 2015, 30(3): 592-598.
[6] 白淑英,史建桥,沈渭寿,高吉喜,张学成. 卫星遥感西藏高原积雪时空变化及影响因子分析[J]. 遥感技术与应用, 2014, 29(6): 954-962.
[7] 李琴,陈曦,包安明,徐征和,赵强. 基于SEBS模型干旱区蒸散发量研究[J]. 遥感技术与应用, 2014, 29(2): 195-201.
[8] 李二珠,谭琨,杜培军,蒋东娥. 基于多时相遥感数据的徐州市植被净初级生产力估算及相关性分析[J]. 遥感技术与应用, 2013, 28(4): 689-696.
[9] 韩辉邦,马明国,严平. 黑河流域NDVI周期性分析及其与气候因子的关系[J]. 遥感技术与应用, 2011, 26(5): 554-560.
[10] 岑奕,张良培,李平湘,村松加奈子. 植被净初级生产力的遥感模型在武汉地区的应用[J]. 遥感技术与应用, 2008, 23(1): 12-16.