Please wait a minute...
img

官方微信

遥感技术与应用  2020, Vol. 35 Issue (4): 950-961    DOI: 10.11873/j.issn.1004-0323.2020.4.0950
遥感应用     
青藏高原1982~2015年FPAR时空变化分析
焦雪敏1,2(),张赫林5,徐富宝6,王岩2,彭代亮2,李存军3,徐希燕4,范海生7,黄运新1()
1.湖北大学资源环境学院 区域开发与环境响应湖北省重点实验室,湖北 武汉 430062
2.中国科学院遥感与数字地球研究所 数字地球重点实验室,北京 100094
3.北京市农林科学院 国家农业信息化工程技术研究中心,北京 100097
4.中国科学院大气物理研究所,北京 100029
5.北京师范大学 北京市陆表遥感数据产品工程技术研究中心,北京 100875
6.中国科学院水利部成都山地灾害与环境研究所,四川 成都 610041
7.广东欧比特人工智能研究院有限公司卫星大数据事业部,广东 珠海 519080
Analysis of the Spatio-temporal Variation in FPAR of the Tibetan Plateau from 1982 to 2015
Xuemin Jiao1,2(),Helin Zhang5,Fubao Xu6,Yan Wang2,Dailiang Peng2,Cunjun Li3,Xiyan Xu4,Haisheng Fan7,Yunxin Huang1()
1.College of Resources and Environmental Sciences, Hubei University, Hubei Key Laboratory of Regional Development and Environmental Response, Wuhan 430062, China
2.Digital Earth Key Laboratory, Institute of Remote Sensing and Digital Earth Chinese Academy of Sciences, Beijing 100094, China
3.National Agricultural Information Engineering Research Center,Beijing Academy of Agricultural and Forestry Sciences,Beijing 100097, China
4.Institute of atmospheric physics, Chinese Academy of Sciences, Beijing 100029, China
5.Facultv of Geoarphical Science BNU, Beijing Normal University, Beijing 100875, China
6.Institute of Mountain Hazards and Environment, CAS, Chengdu 610041, China
7.Department of Satellite Big Data Business, Zhuhai Orbita Aerospace Science & Technology Co. , ltd. , Zhuhai 519080, China
 全文: PDF(5838 KB)   HTML
摘要:

植被吸收利用太阳光合有效辐射比率反映了植被固碳释氧能力,根据青藏高原GIMMS NDVI3g(1982~2015年)和MODIS NDVI(2001~2015年)数据,采用非线性半理论半经验模型进行FPAR反演及时空变化分析。结果表明:①2001~2015年GIMMS NDVI3g和MODIS NDVI反演FPAR在空间分布上具有较高的一致性,相关系数为0.82(P<0.01),年际变化趋势一致至少6年的区域占80%;②青藏高原FPAR受坡度和海拔影响较大,其中15~35坡度FPAR变化最快,700~2 100 m海拔区间FPAR值最大;不同坡向对应的FPAR除南坡方向偏低外其他方向差异不大。③1982~2015年青藏高原四季FPAR时空变化研究中,冬季FPAR年际变化最明显,约78.5%的区域表现为增长趋势;秋季FPAR下降区域最多,但超过71.5%区域变化不显著;④基于MODIS NDVI和GIMMS NDVI两数据反演的所有植被类型的FPAR都在2012年间出现小幅度下降趋势,且不同植被类型FPAR的年际变化趋势各不相同。

关键词: 青藏高原NDVIFPAR植被空间分布年际变化    
Abstract:

The absorbed and utilized Fraction of Photosynthetically Active Radiation(FPAR) reflects the capacity of carbon fixation and oxygen release by vegetation, which may vary over space and time in large scale. Analysis of spatial-temporal variation in FPAR is an important topic of plant ecology. Based on GIMMS NDVI3g (1982~2015) and MODIS NDVI (2001~2015) data in the Tibetan plateau, here we used the nonlinear, semi-theoretical and semi-empirical models to inverse and analyze the spatial and temporal variation in FPAR. The results showed that (1) The spatial distributions of FPAR derived from GIMMS NDVI3g and MODIS NDVI were highly consistent, with the correlation coefficient being 0.82 (P<0.01). The area in which the trends of inter-annual change in the two inversion data were consistent for at least 6 years made up 80% of the studying area. (2) FPAR in Tibetan Plateau was greatly affected by slope and altitude. Changes in FPAR were fastest at slopes of 15~35 degrees and highest at altitude of 700~2 100 m. The effect of slope direction on FPAR was limited. There was little difference in FPAR among different slope directions except for the south where the FPAR was relatively lower. (3)The FPAR data from 1982 to 2015 demonstrated seasonal variation. The inter-annual variation in FPAR was most significant in winter, in which FPAR in about 78.5% of the area increased. FPAR declined most significantly in the fall. (4) FPAR derived from both the MODIS NDVI and GIMMS NDVI data demonstrated a small, temporary decline in 2012. The trend of inter-annual variation in FPAR was largely different among different vegetation types. In conclusion, the FPAR data from 1982 to 2015 in the Tibetan plateau demonstrated both spatial and seasonal variation, which may have important implications for further studies concerning climate and environmental changes in the region.

Key words: the Tibetan plateau    FPAR    NDVI    Vegetation    Spatial distribution    Inter-annual variation
收稿日期: 2019-05-31 出版日期: 2020-09-15
ZTFLH:  TP751  
基金资助: 中国科学院A类战略性先导科技专项“地球大数据科学工程”(XDA19070203);国家自然科学基金项目(41571423)
通讯作者: 黄运新     E-mail: Jiaoxm1117@163.com;y.huang@hubu.edu.cn
作者简介: 焦雪敏(1994-),女,河南焦作人,硕士研究生,主要从事生态遥感监测研究。E?mail: Jiaoxm1117@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
焦雪敏
张赫林
徐富宝
王岩
彭代亮
李存军
徐希燕
范海生
黄运新

引用本文:

焦雪敏,张赫林,徐富宝,王岩,彭代亮,李存军,徐希燕,范海生,黄运新. 青藏高原1982~2015年FPAR时空变化分析[J]. 遥感技术与应用, 2020, 35(4): 950-961.

Xuemin Jiao,Helin Zhang,Fubao Xu,Yan Wang,Dailiang Peng,Cunjun Li,Xiyan Xu,Haisheng Fan,Yunxin Huang. Analysis of the Spatio-temporal Variation in FPAR of the Tibetan Plateau from 1982 to 2015. Remote Sensing Technology and Application, 2020, 35(4): 950-961.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2020.4.0950        http://www.rsta.ac.cn/CN/Y2020/V35/I4/950

图1  GIMMS 和MODIS FPAR空间分布对比(a) GIMMS FPAR (b) MODIS FPAR (c) GIMMS FPAR和MODIS FPAR
图2  1982~2015年四季GIMMS FPAR空间分布
图3  不同地形参数对应的FPAR变化
图4  GIMMS and MODIS FPAR年际变化率对比
图5  不同植被类型GIMMS和MODIS FPAR的年际变化(M stands for MODIS FPAR,G stands for GIMMS FPAR, and different colors represent different vegetation types)(M代表MODIS FPAR年际变化曲线,G代表GIMMS FPAR年际变化曲线,不同颜色代表不同植被类型FPAR值)
图6  4个季节GIMMS FPAR和GIMMS FPAR的年际变化(M stands for MODIS FPAR,G stands for GIMMS FPAR)(M代表四季MODIS FPAR年际变化曲线,G代表四季GIMMS FPAR年际变化曲线)
图7  1982~2015年FPAR年际变化率空间分布
1 Zhang Jing, Xie Ya’nan, Wang Mingquan, et al. Estimation of Daily Value from PAR Instantaneous Value [J]. Arid Zone Research,2019,36(1):220-227.
1 张璟,谢亚楠,汪鸣泉,等.基于光合有效辐射瞬时值估算日均值的方法[J].干旱区研究, 2019,36(1):220-227.
2 Wang Baolin. Hyperspectral FPAR Estimation of Typical Steppe [J]. Grassland and Prataculture,2017,29(4):22-27.
2 王保林.基于高光谱的典型草原FPAR估算研究[J].草原与草业,2017,29(4):22-27.
3 Li Gang, Wang Daolong, Fan Wenjie, et al. Analysis on Temporal Variation of FPAR on Leymus Chinensis Meadow-steppes[J]. Remote Sensing Information,2009(1):10-15.
3 李刚,王道龙,范闻捷,等.羊草草甸草原FPAR时间变化规律分析[J].遥感信息,2009(1):10-15.
4 Zhou G S, Wang Y H, Jiang Y L, et al. Estimating Biomass and Net Primary Production from Forest Inventory Data: A Case Study of China’s Larix Forests[J]. Forest Ecology & Management, 2002, 169(1):149-157.DOI:10.1016/s0378-1127(02)00305-5.
doi: 10.1016/s0378-1127(02)00305-5
5 Li Jin, Zhang Degang, Zhang Hongbin, et al. A Study on the Variations of Photosynthetic Active Radiation Parameters of a Leymus Chinensis Meadow-steppe in Hulunber [J].Acta Prataculturae Sinica,2010,19(4):243-250.
5 李瑾,张德罡,张宏斌等.呼伦贝尔羊草草甸草原光合有效辐射分量变化规律分析[J].草业学报,2010,19(4):243-250.
6 Li Fenling. A Remotely Sensed Retrieval Study on Land Surface Temperature in alpine and plateau region[D]. Lanzhou:Journal of Lanzhou University,2006.
6 李粉玲.高山高原地区地表温度遥感反演研究[D].兰州:兰州大学,2006.
7 Jiang Dong, Wang Naibin, Yang Xiaohuan, et al. Dynamic Properties of Absorbed Photosynthetic Active Radiation Absorption and its Relation to Crop Yield [J]. System Sciemces and Comprehensive Studies In Agriculture,2002(1):51-54.
7 江东,王乃斌,杨小唤等.吸收光合有效辐射的时序变化特征及与作物产量的响应关系[J].农业系统科学与综合研究,2002(1):51-54.
8 Yang Fei, Zhang Bai, Liu Zhiming, et al. A Study of Corn FPAR Estimation from Hyper Spectral Data based on PCA Approach and Near-infrared Short-wave Bands [J]. Remote Sensing for Land and Resources,2008(4):9-13.
8 杨飞,张柏,刘志明,等.玉米冠层FPAR的高光谱遥感估算研究——基于PCA方法及近、短波红外波段[J]. 国土资源遥感,2008(4):9-13.
9 Liang Shouzhen, Xueyan Sui, Hou Xuehui, et al. Simulation and Analysis on Green Fraction of Absorbed Photosynthetically Active Radiation of Deciduous Broadleaved Forest Canopy Through Remote Sensing Model[J]. Acta Ecologica Sinica,2017,37(10):3415-3424.
9 梁守真,隋学艳,侯学会,等.落叶阔叶林冠层光合有效辐射分量的遥感模拟与分析[J].生态学报,2017,37(10):3415-3424.
10 Dong Taifeng, Meng Jihua, Wu Binfang. Overview on Methods of Deriving Fraction of Absorbed Photosynthetically Active Radiation(FPAR) Using Remote Sensing [J]. Acta Ecologica Sinica,2012,32(22):7190-7201.
10 董泰锋,蒙继华,吴炳方.基于遥感的光合有效辐射吸收比率(FPAR)估算方法综述[J].生态学报,2012,32(22):7190-7201.
11 Wiegand C.L, Richardson A.J,Escobar D.E, et al. Vegetation Indices in Crop Assessments[J]. Remote Sensing of Environment, 1991, 35(2–3):105-119.
12 Samuel N.Goward, Karl F.Huemmrich. Vegetation Canopy PAR Absorptance and the Normalized Difference Vegetation Index: An Assessment Using the SAIL Model[J]. Remote Sensing of Environment, 1992, 39(2):119-140.
13 Zhang Jincheng, Zhou Wenzuo. Spatial-temporal Changes of Fraction of Absorbed Photosynthetically Active Radiation in Qinling-Daba Mountains from 2006 to 2015[J]. Chinese Journal of Ecology,2019,38(5):1453-1463.
13 章金城,周文佐.2006~2015年秦巴山区植被光合有效辐射吸收比例的时空变化特征[J].生态学杂志,2019,38(5):1453-1463.
14 Yang Fei, Zhang Bai, Wang Zongming, et al. Comparison of Methods for Estimating Cornr Canopy Parameters Based on MODIS Data [J]. Remote Sensing Technology and Application,2008,23(2):147-153.
14 杨飞,张柏,王宗明,等.基于MODIS数据的玉米植被参数估算方法的对比分析[J].遥感技术与应用,2008,23(2):147-153.
15 Lin Xiaohui, Wang Junbang, Li Guicai, et al. Vegetation SpatiotEmporal Variation in Southeast Asia based on MODIS Remote Sensing Monitoring [J]. Chinese Journal of Ecology,2011,30(4):629-635.
15 林小惠,王军邦,李贵才,等.基于MODIS遥感监测的东南亚地区植被动态[J].生态学杂志,2011,30(4):629-635.
16 Du Jiaqiang, Shu Jianmin, Wang Yuehui, et al. Comparison of GIMMS and MODIS Normalized Index Composite Data for Qinghai-tibet Plateau [J]. Chinese Journal of Applied Ecology,2014,25(2):533-544.
16 杜加强,舒俭民,王跃辉,等.青藏高原MODIS NDVI与GIMMS NDVI的对比[J].应用生态学报,2014,25(2):533-544.
17 Fensholt Rarmus, R.Proud Simon. Evaluation of Earth Observation based Global Long Term Vegetation Trends ― Comparing GIMMS and MODIS Global NDVI Time Series[J]. Remote Sensing of Environment, 2012, 119(3):131-147.DOI:10.1016/j.rse.2011.12.015.
doi: 10.1016/j.rse.2011.12.015
18 Wang Xiaohang, Chang Kezheng, Wang Shigong, et al. Primary Study on Regional Characteristics of Solar Radiation in China during 1961~2000[J]. Journal of Desert Research,2008,28(3):554-561.
18 文小航, 尚可政, 王式功, 等. 1961~2000年中国太阳辐射区域特征的初步研究[J]. 中国沙漠, 2008,28(3):554-561.
19 Li Guodong. Studies on Biogeography Patterns of Plants in the Sino-himalayan Regions-cases from Lagotis,Neopichrorhiza Scrophulariiflora,and Cyananthus Delavayi[D]. Beijing: University of Chinese Academy of Sciences,2013.李国栋. 中国—喜马拉雅地区物种分布格局机制的研究——以兔耳草属、胡黄连、细叶蓝钟花为例[D]. 北京:中国科学院大学,2013.
20 Wang Wenling. Trends and Estimations of Photo-synthetically Active Radiation in Tibetan plateau [D]. Nanjing:Nanjing University of Information Science and Technology,2012.
20 王文玲. 青藏高原光合有效辐射的长期变化趋势及其估算方程[D].南京:南京信息工程大学,2012.
21 Wang Yan. Overview of Plant Diversity and Conservation Strategies in the Tibetan Plateau Ecosystem[J].Chinese Qinghai Journal of Animal and Veterinary Sciences,2015, 45(3):47-49.
21 王琰. 青藏高原生态系统中植物多样性及保护策略概述[J]. 青海畜牧兽医杂志, 2015, 45(3):47-49.
22 He Tao, Wu Xueming, Jia Jingfen. Research Advances in Morphology and Anatomy of Alpine Plants Growing in the Qinghai-Tibet Plateau and their Adaptations to Environments[J]. Acta Ecologica Sinica, 2007.DOI:http:
doi: http:
23 Liu J Q, Duan Y W, Hao G, et al. Evolutionary history and underlying adaptation of alpine plants on the Qinghai-Tibet Plateau[J]. Journal of Systematics and Evolution, 2014, 52(3):241-249.
24 Sun Honglie, Zheng Du, Yao Hengdong, et al. Protection and Construction of the National Ecological Security Shelter Zone on Tibetan Plateau[J].Acta Geographica Sinica,2012,67(1):3-12.
24 孙鸿烈,郑度,姚檀栋,等.青藏高原国家生态安全屏障保护与建设[J].地理学报,2012,67(1):3-12.
25 Yang Bohui, Lang Xia, Sun Xiaoping. Biodiversity on Qinghai-tibet Plateau[J].Journal of Livestock Ecology,2005, 26(6):1-5.
25 杨博辉, 郎侠, 孙晓萍. 青藏高原生物多样性[J]. 家畜生态学报, 2005, 26(6):1-5.
26 Xie Junfei, Guo Jia. Spatial-temporal Variation of Fraction of Absorbed Photosynthetically Active Radiation(FPAR)in Beijing during 2010-2012 [J]. Chinese Journal of Applied Ecology,2016,27(4):1203-1210.
26 谢军飞,郭佳.2010~2012年北京植被光合有效辐射吸收比例的时空变化[J].应用生态学报,2016,27(4):1203-1210.
27 Peng D L,Zhang B,Liu L Y,et al. Characteristics and Drivers of Global NDVI-based FPAR from 1982 to 2006[J]. Global Biogeochemical Cycles,2012,26(3):GB3015.DOI:10.1029/2011GB004060.
doi: 10.1029/2011GB004060
28 Zhu Wenquan, Pan Yaozhong, Zhang Jingshui, et al. Estimation of Net Primary Productivity of Chinese Terrestrial Vegetation based on Remote Sensing[J]. Journal of plant ecology,2007, 31(3): 413-424.
28 朱文泉, 潘耀忠, 张锦水. 等.中国陆地植被净初级生产力遥感估算. 植物生态学报, 2007, 31(3): 413-424.
29 Zhou Bangshe, Yang Xinbin. Research Progress in Slope-Directive Variation of Mountain Soils[J]. Journal of hebei agricultural university, 2011, 34(2):80-85.
29 周邦社, 杨新兵. 植被和坡向对土壤温度与土壤热通量变化的影响[J]. 河北农业大学学报, 2011, 34(2):80-85.
30 Pu Yulin. Long Gaofei, Liu Shiquan, et al. Effect of Vegetation and Slope on Soil Temperature and Soil Heat Flux[J].Chinese Journal of Soil Science, 2007, 38(4):753-757.
30 蒲玉琳, 龙高飞, 刘世全,等. 山地土壤坡向性分异的研究概况[J]. 土壤通报, 2007, 38(4):753-757.
31 Wang Wenling. Trends and Estimations of Photo-synthetically Active Radiation in Tibetan Plateau[D]. Nanjing: Nanjing University of Information Technology,2012.
31 王文玲. 青藏高原光合有效辐射的长期变化趋势及其估算方程[D]. 南京:南京信息工程大学, 2012.
32 Cui M Y, Wang J B, Wang S Q, et al. Temporal and Spatial Distribution of Evapotranspiration and Its Influencing Factors on Qinghai-Tibet Plateau from 1982 to 2014. Journal of Resources and Ecology, 2019, 10(2):213-224.[崔明月, 王军邦, 王绍强,等. 1982-2014年青藏高原地表蒸散量时空分布及其变化影响因子分析[J]. 资源与生态学报, 2019, 10(2): 213-224.]
33 Xu Xiyuan, Zhang Liping. Research on Effecting Factors of Precipition’s Redistribution of Rainfall Intensity,Gradient and Cover Ratio[J]. Journal of Soil and Water Conservation,2006,20(4):28-30.
33 吴希媛, 张丽萍. 降水再分配受雨强、坡度、覆盖度影响的机理研究[J]. 水土保持学报, 2006,20(4):28-30.
34 Niu Xiaojun, Feng Wenlan, Wang Yongqian, et al. Study on Estimation of Photosynthetically Effective Radiation under Complicated Topography by remote sensing[J]. Plateau Meteorology,2017,36(4):1029-1038.
34 牛晓俊,冯文兰,王永前,等.复杂地形下光合有效辐射的遥感估算研究[J].高原气象,2017,36(4):1029-1038.
35 Qi Donglin, Su Wenjiang, Li Bo, et al. Varition Characteristics of Sunshine Hours in Growing Season in Qinghai Plateau in Recent 50 Years[J]. Chinese Agricultural Science Bulletin Chin Agric Bull,2015, 31(20):186-194.
35 祁栋林, 苏文将, 李璠,等. 近50年青海高原生长季日照时数的变化特征[J]. 中国农学通报, 2015, 31(20):186-194.
36 Liu Shuangyu, Zhang Li, Wang Cuizhen. Vegetation Phenology in the Tibetan Plateau Using MODIS Data from 2000 to 2010[J].Remote Sensing Information,2014(6):25-30.刘双俞, 张丽, 王翠珍,等. 基于MODIS数据的青藏高原植被物候变化趋势研究(2000~2010年)[J]. 遥感信息, 2014(6):25-30.
37 Christopher H.Lusk, Peter B. Reich, Rebecca A. Montgomery,.et alWhy are Evergreen Leaves So Contrary about Shade?[J]. Trends in Ecology and Evolution, 2008, 23(6): 299-303.
38 Niu Cuijuan. General Ecology [M].Beijing: Higher Education Press,2015.
38 牛翠娟.基础生态学[M].北京:高等教育出版社,2015.
39 Song Yongchang. Vegelation Ecology[M].Beijing: Higher Education Press,2016.
39 宋永昌.植被生态学[M].北京:高等教育出版社,2016.
40 Xiao Wanxin, Wang Yanbo, Xie Pudi, et al. Research Progress of Photosystem Variation,Stoma Movement and Its Regulation of Plant Leaf Under High Temperature and Drought Stress[J]. Liaoning Agricultural Sciences, 2012(6):29-33.肖万欣, 王延波, 谢甫绨,等. 高温和干旱胁迫下,植物叶片光合系统变化、气孔运动及其调控研究进展[J]. 辽宁农业科学, 2012(6):29-33.
[1] 李汝嫣,颉耀文,姜转芳. 面向对象的天然绿洲与人工绿洲区分[J]. 遥感技术与应用, 2020, 35(4): 873-881.
[2] 王鑫蕊, 晋锐, 林剑, 曾祥飞, 赵泽斌. 有云Landsat TM/OLI影像结合DEM提取青藏高原湖泊边界的自动算法研究[J]. 遥感技术与应用, 2020, 35(4): 882-892.
[3] 刘婵,刘冰,赵文智,朱钊岑,司瑞. 中亚地区植被净初级生产力时空动态及其与气候因子关系[J]. 遥感技术与应用, 2020, 35(4): 924-933.
[4] 唐希颖,崔耀平,李楠,付一鸣,刘小燕,闰亚迪. 2000~2015年北京市土地利用强度及其辐射反馈评估[J]. 遥感技术与应用, 2020, 35(3): 587-595.
[5] 王红岩,汪晓帆,高亮,李强子,赵龙才,杜鑫,张源. 基于季相变化特征的撂荒地遥感提取方法研究[J]. 遥感技术与应用, 2020, 35(3): 596-605.
[6] 岳昂,曾庆伟,王怀警. 于桥水库蓝藻水华遥感长时序监测研究[J]. 遥感技术与应用, 2020, 35(3): 694-701.
[7] 谷祥辉,张英,桑会勇,翟亮,李少军. 基于哨兵2时间序列组合植被指数的作物分类研究[J]. 遥感技术与应用, 2020, 35(3): 702-711.
[8] 王飞龙,王福民,胡景辉,谢莉莉,谢京凯. 基于相对光谱变量的无人机遥感水稻估产及产量制图[J]. 遥感技术与应用, 2020, 35(2): 458-468.
[9] 龙爽,郭正飞,徐粒,周华真,方伟华,许映军. 基于Google Earth Engine的中国植被覆盖度时空变化特征分析[J]. 遥感技术与应用, 2020, 35(2): 326-334.
[10] 谭美宝,冉有华,苏阳,李新,杜得彦,廉耀康. 黑河流域2001~2017年植被变化特征及其可延续性评价[J]. 遥感技术与应用, 2020, 35(2): 335-344.
[11] 张永宏,杨晨阳,陶润喆,王剑庚,田伟. 基于FY-4A数据的青藏高原多时相云检测方法[J]. 遥感技术与应用, 2020, 35(2): 389-398.
[12] 纪甫江,蒙继华,方慧婷. 基于CASA-WOFOST耦合模型的大豆单产遥感估算研究[J]. 遥感技术与应用, 2020, 35(2): 406-415.
[13] 王树果, 马春锋, 赵泽斌, 魏龙. 基于Sentinel-1及Landsat 8数据的黑河中游农田土壤水分估算[J]. 遥感技术与应用, 2020, 35(1): 13-22.
[14] 张新平,乔治,李皓,闫杰,张芳芳,赵栋锋,王得祥,康海斌,杨航,冯扬. 基于Landsat影像和不规则梯形方法遥感反演延安城市森林表层土壤水分[J]. 遥感技术与应用, 2020, 35(1): 120-131.
[15] 陈家利,郑东海,庞国锦,李新. 基于SMAP亮温数据反演青藏高原玛曲区域土壤未冻水[J]. 遥感技术与应用, 2020, 35(1): 48-57.