1 |
Quere C L, Raupach M R, Canadell J G, et al. Trends in the Sources and Sinks of Carbon Dioxide[J]. Nature Geoscience, 2009, 2(12):831-836. doi: 10.1038/ngeo689.
doi: 10.1038/ngeo689
|
2 |
Zhang Y, Xu M, Chen H, et al. Global Pattern of NPP to GPP Ratio derived from MODIS Data: Effects of Ecosystem Type, Geographical Location and Climate[J]. Global Ecology and Biogeography, 2009, 18(3):280-290. doi: 10.1111/j.1466-8238.2008.00442.x.
doi: 10.1111/j.1466-8238.2008.00442.x
|
3 |
Running S W. Climate Change Ecosystem Disturbance, Carbon, and Climate[J]. Science, 2008, 321(5889):652-653. doi: 10.1126/science.1159607.
doi: 10.1126/science.1159607
|
4 |
Pan Y, Birdsey R A, Fang J, et al. A Large and Persistent Carbon Sink in the World's Forests[J]. Science, 2011, 333(6045):988-993. doi: 10.1126/science.1201609.
doi: 10.1126/science.1201609
|
5 |
Turner D P, Ollinger S V, Kimball J S. Integrating Remote Sensing and Ecosystem Process Models for Landscape to Regional Scale Analysis of the Carbon Cycle[J]. BioScience, 2004, 54(6):573-584. doi: 10.1641/0006-3568(2004)054[0573:IRSAEP]2.0.CO;2.
doi: 10.1641/0006-3568(2004)054
|
6 |
Field C B, Randerson J T, Malmstroem C M. Global Net Primary Production: Combining Ecology and Remote Sensing[J]. Remote Sensing of Environment, 1995, 51(1):77-88. doi: 10.1016/0034-4257(94)00066-V.
doi: 10.1016/0034-4257(94)00066-V
|
7 |
Chen J M, Black T A. Defining Leaf Area Index for Non-flat Leaves[J]. Plant Cell and Environment, 1992, 15(4):421-429. doi: 10.1111/j.1365-3040.1992.tb00992.x.
doi: 10.1111/j.1365-3040.1992.tb00992.x
|
8 |
Myneni R B, Hoffman S, Knyazikhin Y, et al. Global Products of Vegetation Leaf Area and Fraction Absorbed PAR from Year One of MODIS Data[J]. Remote Sensing of Environment, 2002, 83(1-2):214-231. doi: 10.1016/S0034-4257(02)00074-3.
doi: 10.1016/S0034-4257(02)00074-3
|
9 |
Liu Y, Liu R, Chen J M. Retrospective Retrieval of Long-term Consistent Global Leaf Area Index (1981-2011) from Combined AVHRR and MODIS Data[J]. Journal of Geophysical Research, 2012, 117(G0403). doi: 10.1029/2012JG002084.
doi: 10.1029/2012JG002084
|
10 |
Zhu Z, Bi J, Pan Y, et al. Global Data Sets of Vegetation Leaf Area Index (LAI)3g and Fraction of Photosynthetically Active Radiation (FPAR)3g Derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the Period 1981 to 2011[J]. Remote Sensing, 2013, 5(2):927-948. doi: 10.3390/rs5020927.
doi: 10.3390/rs5020927
|
11 |
Xiao Z, Liang S, Wang J, et al. Use of General Regression Neural Networks for Generating the GLASS Leaf Area Index Product from Time-series MODIS Surface Reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 52(1):209-223. doi: 10.1109/TGRS.2013.2237780.
doi: 10.1109/TGRS.2013.2237780
|
12 |
Baret F, Weiss M, Lacaze R, et al. GEOV1: LAI and FAPAR Essential Climate Variables and FCOVER Global Time Series Capitalizing over Existing Products. Part1: Principles of Development and Production[J]. Remote Sensing of Environment,2013,137:299-309. doi: 10.1016/j.rse.2012. 12.027.
doi: 10.1016/j.rse.2012. 12.027
|
13 |
Fang H, Baret F, Plummer S, et al. An Overview of Global Leaf Area Index (LAI): Methods, Products, Validation, and Applications[J]. Reviews of Geophysics, 2019, 57(3):739-799. doi: 10.1029/2018RG000608.
doi: 10.1029/2018RG000608
|
14 |
Zhang Y, Song C, Band L, et al. Reanalysis of Global Terrestrial Vegetation Trends from MODIS Products: Browning or Greening?[J]. Remote Sensing of Environment, 2017, 191:145-155. doi: 10.1016/j.rse.2016.12.018.
doi: 10.1016/j.rse.2016.12.018
|
15 |
Xiao Z, Liang S, Jiang B. Evaluation of Four Long Time-series Global Leaf Area Index Products[J]. Agricultural and Forest Meteorology, 2017, 246:218-230. doi: 10.1016/j.agrformet.2017.06.016.
doi: 10.1016/j.agrformet.2017.06.016
|
16 |
Jiang C, Ryu Y, Fang H, et al. Inconsistencies of Interannual Variability and Trends in Long-term Satellite Leaf Area Index Products[J]. Global Change Biology, 2017, 23(10):4133-4146. doi: 10.1111/gcb.13787.
doi: 10.1111/gcb.13787
|
17 |
Liu Y, Xiao J, Ju W, et al. Satellite-derived LAI Products Exhibit Large Discrepancies and Can Lead to Substantial Uncertainty in Simulated Carbon and Water Fluxes[J]. Remote Sensing of Environment, 2018, 206:174-188. doi: 10.1016/j.rse.2017.12.024.
doi: 10.1016/j.rse.2017.12.024
|
18 |
Xie X, Li A, Jin H, et al. Assessment of Five Satellite-derived LAI Datasets for GPP Estimations through Ecosystem Models[J]. Science of the Total Environment, 2019, 690:1120-1130. doi: 10.1016/j.scitotenv.2019.06.516.
doi: 10.1016/j.scitotenv.2019.06.516
|
19 |
Fang H, Wei S, Liang S. Validation of MODIS and CYCLOPES LAI Products Using Global Field Measurement Data[J]. Remote Sensing of Environment, 2012, 119:43-54. doi: 10.1016/j.rse.2011.12.006.
doi: 10.1016/j.rse.2011.12.006
|
20 |
Xiao Z, Liang S, Wang J, et al. Use of General Regression Neural.Networks for Generating the GLASS Leaf Area Index Product from Time Series MODIS Surface Reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1):209-223. doi: 10.1109/TGRS.2013.2237780.
doi: 10.1109/TGRS.2013.2237780
|
21 |
Xiao Z, Liang S, Wang J, et al. Long Time-series Global Land Surface Satellite(GLASS) Leaf Area Index Product Derived from MODIS and AVHRR Surface Reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016,54(9):5301-5318. doi:10.1109/TGRS.2016. 2560522.
doi: 10.1109/TGRS.2016. 2560522
|
22 |
Liu Yibo. The Spatial and Temporal Variations of Water Use Efficiency in China’s Terrestrial Ecosystems Simulated Using Remote Sensing and a Process-based Model[D]. Nanjing: Nanjing University, 2015.
|
22 |
柳艺博. 基于遥感和过程模型的中国陆地生态系统水分利用效率时空变化特征研究[D]. 南京: 南京大学, 2013.
|
23 |
Yu G, Wen X, Sun X, et al. Overview of ChinaFLUX and Evaluation of Its Eddy Covariance Measurement[J]. Agricultural and Forest Meteorology, 2006, 137(3-4):125-137. doi: 10.1016/j.agrformet.2006.02.011.
doi: 10.1016/j.agrformet.2006.02.011
|
24 |
He M, Zhou Y, Ju W, et al. Development of a Two-leaf Light Use Efficiency Model for Improving the Calculation of Terrestrial Gross Primary Productivity[J]. Agricultural and Forest Meteorology, 2013, 173:28-39. doi: 10.1016/j.agrformet.2013.01.003.
doi: 10.1016/j.agrformet.2013.01.003
|
25 |
Zhou Y, Wu X, Ju W, et al. Global Parameterization and Validation of a Two-leaf Light Use Efficiency Model for Predicting Gross Primary Production across FLUXNET Sites[J]. Journal of Geophysical Research: Biogeosciences, 2015, 121(4):1045-1072. doi: 10.1002/2014JG002876.
doi: 10.1002/2014JG002876
|
26 |
Wu Xiaocui. Impacts of Changes in Solar Radiation on Terrestrial Gross Primary Productivity in China[D]. Nanjing: Nanjing University, 2015.
|
26 |
吴小翠. 中国地区辐射变化对陆地生态系统总初级生产力的影响[D]. 南京: 南京大学, 2015.
|
27 |
Zan M, Zhou Y, Ju W, et al. Performance of a Two-leaf Light Use Efficiency Model for Mapping Gross Primary Productivity against Remotely Sensed Sun-induced Chlorophyll Fluorescence Data[J]. Science of the Total Environment, 2018, 613:977-989. doi: 10.1016/j.agrformet.2013.01.003.
doi: 10.1016/j.agrformet.2013.01.003
|
28 |
Shan Liang, Zhou Yanlian. Consistency Analysis of Global GPP Products and GPP Simulated by Two-leaf Light Use Efficiency Model[J]. Journal of Shanxi Normal University(Natural Science Edition), 2019, 47(3):103-114.
|
28 |
单良, 周艳莲. 两叶光能利用率模拟结果与全球GPP产品的时空一致性[J].陕西师范大学学报(自然科学版),2019,47(3):103-114.
|
29 |
Zheng Y, Shen R, Wang Y, et al. Improved Estimate of Global Gross Primary Production for Reproducing Its Long-term Fariation, 1982-2017[J]. Earth System Science Data Discussion, 2019, in Review. doi: 10.5194/essd-2019-126.
doi: 10.5194/essd-2019-126
|
30 |
Ma J, Xiao X, Miao R, et al. Trends and Controls of Terrestrial Gross Primary Productivity of China during 2000-2016[J]. Environmental Reseach Letters, 2019, 14(084032). doi: 10.1088/1748-9326/ab31e4.
doi: 10.1088/1748-9326/ab31e4
|
31 |
Running S W, Nemani R R, Heinsch F A, et al. A Continuous Satellite-derived Measure of Global Terrestrial Primary Production[J]. BioScience, 2004, 54(6):547-560. doi: 10.1641/0006-3568(2004)054[0547:ACSMOG]2.0.CO;2.
doi: 10.1641/0006-3568(2004)054
|
32 |
Li X, Liang S, Yu G, et al. Estimation of Gross Primary Production over the Terrestrial Ecosystems in China[J]. Ecological Modelling, 2013, 261:80-92. doi: 10.1016/j.ecolmodel.2013.03.024.
doi: 10.1016/j.ecolmodel.2013.03.024
|
33 |
Yao Y, Wang X, Li Y, et al. Spatiotemporal Pattern of Gross Primary Productivity and Its Covariation with Climate in China over the Last Thirty Years[J]. Global Change Biology, 2018, 24(1):184-96. doi: 10.1111/gcb.13830.
doi: 10.1111/gcb.13830
|
34 |
Chen W, Zhu D, Huang C, et al. Negative Extreme Events in Gross Primary Productivity and Their Drivers in China during the Past Three Decades[J]. Agricultural and Forest Meteorology,2019,275:47-58.doi:10.1016/j.agrformet.2019. 05.002.
doi: 10.1016/j.agrformet.2019. 05.002
|
35 |
Li X, Zhu Z, Zheng H, et al. Estimation of Gross Primary Production in China (1982–2010) with Multiple Ecosystem Models[J]. Ecological Modelling, 2016, 324:33-44. doi: 10.1016/j.ecolmodel.2015.12.019.
doi: 10.1016/j.ecolmodel.2015.12.019
|
36 |
Verbeeck H, Samson R, Verdonck F, et al. Parameter Sensitivity and Uncertainty of the Forest Carbon Flux Model FORUG: A Monte Carlo Analysis[J]. Tree Physiology, 2006, 26(6):807-817. doi: 10.1093/treephys/26.6.807.
doi: 10.1093/treephys/26.6.807
|
37 |
Chen J M, Ju W, Ciais P, et al. Vegetation Structural Change Since 1981 Significantly Enhanced the Terrestrial Carbon Sink[J]. Nature Communications, 2019, 10(4259). doi: 10.1038/s41467-019-12257-8.
doi: 10.1038/s41467-019-12257-8
|
38 |
Smith W K, Reed S C, Cleveland C C, et al. Large Divergence of Satellite and Earth System Model Estimates of Global Terrestrial CO2 Fertilization[J]. Nature Climate Change, 2016, 6(3):306-310. doi: 10.1038/nclimate2879.
doi: 10.1038/nclimate2879
|
39 |
Yuan W, Cai W, Xia J, et al. Global Comparison of Light Use Efficiency Models for Simulating Terrestrial Vegetation Gross Primary Production based on the LaThuile Database[J]. Agricultural and Forest Meteorology, 2014, 192:108-120. doi: 10.1016/j.agrformet.2014.03.007.
doi: 10.1016/j.agrformet.2014.03.007
|
40 |
Zhao M, Running S W, Nemani, R R. Sensitivity of Moderate Resolution Imaging Spectroradiometer (MODIS) Terrestrial Primary Production to the Accuracy of Meteorological Reanalyses[J]. Journal of Geophysical Research Biogeoscience, 2006, 111(G01002). doi: 10.1029/2004JG000004.
doi: 10.1029/2004JG000004
|