Please wait a minute...
img

官方微信

遥感技术与应用  2020, Vol. 35 Issue (5): 1015-1027    DOI: 10.11873/j.issn.1004-0323.2020.5.1015
LAI专栏     
不同叶面积指数遥感数据模拟中国总初级生产力的时空差异
侯吉宇1(),周艳莲1(),刘洋2
1.南京大学地理与海洋科学学院,江苏 南京 210023
2.中国科学院地理科学与资源研究所,北京 100101
Spatial and Temporal Differences of GPP Simulated by Different Satellite-derived LAI in China
Jiyu Hou1(),Yanlian Zhou1(),Yang Liu2
1.School of Geography and Ocean science,Nanjing University,Nanjing,Jiangsu 210023,China
2.Institute of Geographical Sciences and Resources,Chinese Academy of Sciences,Beijing 100101,China
 全文: PDF(11244 KB)   HTML
摘要:

陆地生态系统总初级生产力(GPP)反映了植物吸收固定大气中CO2的能力,是碳循环过程中的重要环节。光能利用率(LUE)模型被广泛应用于GPP模拟。叶面积指数(LAI)数据是LUE模型的重要输入数据,不同的LAI数据差异较大,从而导致GPP模拟存在很大差异。利用3种常用的卫星遥感LAI数据(MCD15、GLASS和GlobMap)和气象数据模拟中国2003~2017年的GPP,比较了3种LAI数据在中国区域的时空差异,分析不同LAI数据模拟的中国GPP的时空差异。研究结果表明:3种LAI数据在中国区域的年平均值和LAI变化趋势的空间分布格局存在明显差异,森林区域的差异较大;2003~2017年间,中国区域3种LAI年平均值均呈显著增加趋势(p<0.01),但不同LAI数据年平均值的年际变化差异明显;站点尺度GLASS LAI模拟的GPP与观测值相关性较好;不同LAI数据模拟的中国GPP总量多年平均值差异明显,最大值为7.46 Pg C a-1 (GLASS),最小值为6.39 Pg C a-1 (GlobMap);3种LAI数据模拟的中国GPP总量在2003~2017年呈显著增加趋势(p<0.05),但不同的LAI数据模拟的中国GPP年总量的年际变化差异明显;不同LAI数据模拟的年均GPP和GPP变化趋势的空间分布格局存在明显差异,森林和农田区域的差异较大。研究结果有助于评估由于LAI数据造成的区域GPP模拟结果的不确定性。

关键词: 叶面积指数(LAI)总初级生产力(GPP)两叶光能利用率模型(TL-LUE)时空差异    
Abstract:

Terrestrial Gross Primary Production (GPP) is a key component of the carbon cycle, which represents the ability of plants to absorb and fix CO2 in the atmosphere. Light Use Efficiency (LUE) model is commonly used in regional simulation of GPP. Leaf Area Index (LAI) is a key input data in TL-LUE model. There are great spatial and temporal difference between various LAI data. Difference in spatial and temporal patterns between GPP simulations derived with different LAI needs to be investigated further. In this study, three satellite-derived LAI data, MCD15, GLASS and GlobMap, were used to simulate GPP in China from 2003 to 2017. Firstly, three LAI data were compared to investigate the difference in the spatial and temporal patterns. Then, GPP simulated by three LAI data were compared to investigate the difference. Results showed that spatial and temporal patterns of LAI differed substantially among different LAI data, and there were great differences in forest regions. Averaged annual value of three LAI data showed significant increasing trends from 2003 to 2017(p<0.01). However, the interannual variation of the annual mean value of different LAI data were obviously different. The GPP simulated by GLASS LAI had high correlation with EC GPP. Mean annual total GPP in China simulated with different LAI data has great difference, varied from 6.39 Pg C a-1 (GlobMap) to 7.46 Pg C a-1 (GLASS). Annual total GPP in China simulated by three LAI data showed significant increasing trends from 2003 to 2017 (p<0.05). However, the interannual variation of different annual total GPP were obviously different. The spatial and temporal patterns of GPP differed substantially among different simulated GPP, and there were great differences in forest and crop regions. This study was helpful to assess the uncertainties of regional GPP simulation derived from input data.

Key words: Leaf Area Index (LAI)    Gross Primary Productivity (GPP)    Two Leaf Light Use Efficiency (TL-LUE) model    Spatial and temporal difference
收稿日期: 2020-02-04 出版日期: 2020-11-26
ZTFLH:  TP75  
基金资助: 国家重点研发计划项目(2019YFA0606604);国家自然科学基金项目(41671343)
通讯作者: 周艳莲     E-mail: 18061790512@163.com;zhouyl@nju.edu.cn
作者简介: 侯吉宇(1994-),男,黑龙江佳木斯人,硕士研究生,主要从事陆地生态系统总初级生产力估算。E?mail:18061790512@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
侯吉宇
周艳莲
刘洋

引用本文:

侯吉宇,周艳莲,刘洋. 不同叶面积指数遥感数据模拟中国总初级生产力的时空差异[J]. 遥感技术与应用, 2020, 35(5): 1015-1027.

Jiyu Hou,Yanlian Zhou,Yang Liu. Spatial and Temporal Differences of GPP Simulated by Different Satellite-derived LAI in China. Remote Sensing Technology and Application, 2020, 35(5): 1015-1027.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2020.5.1015        http://www.rsta.ac.cn/CN/Y2020/V35/I5/1015

LAI数据集版本数据源空间分辨率时间分辨率时间范围参考文献
MCD15C6MODIS500 m8 d2003~2017Myneni等[8]
GLASSV4.0MODIS C61 km8 d2003~2017Xiao等[20]
GlobMapV3.0MODIS C6500 m8 d2003~2017Liu等[9]
表1  LAI数据信息(MCD15,GLASS和GlobMap)
图1  2017年中国土地覆盖类型分布图审图号:GS(2016)2886
植被类型DBFDNFEBFENFMFSHRGRACROSAVWS
聚集度指数Ω0.80.60.80.60.80.80.90.90.80.8
反照率α0.180.150.180.150.170.230.230.230.160.16
εmsun(g CMJ-1)0.620.400.490.590.660.460.891.190.50.48
εmsh(g CMJ-1)2.171.731.961.871.842.112.824.811.531.70
VPDmax(kpa)4.14.14.14.14.14.14.14.14.14.1
VPDmin(kpa)0.930.930.930.930.930.930.930.930.930.93
Tamin,h (℃)7.9410.449.098.318.511.3912.0212.028.6111.39
Tamin,l (℃)-8-8-8-8-8-8-8-8-8-8
表2  TL-LUE模型参数
图2  2003~2017年中国LAI-MCD15、LAI-GLASS和LAI-GlobMap年平均值(a~c)、差异(d~f)和年平均变化趋势(g~i)的空间分布(经过了M-K趋势检测,正值代表LAI有显著增加趋势(p<0.05),负值代表LAI有显著减少趋势(p<0.05),灰色代表没有显著变化趋势(p>0.05)) (单位:m2 m-2)审图号:GS(2016)2886
图3  2003~2017年中国LAI多年年平均值(单位:m2 m-2)
图4  2003~2017年中国LAI年平均值(单位:m2 m-2)
图5  中国8个通量站点GPP-EC与GPP-MCD15、GPP-GLASS和GPP-GlobMap年总量比较
图6  2003~2017年中国GPP-MCD15、GPP-GLASS和GPP-GlobMap年平均值(a~c)、差异(d~f)和变化趋势(g~i)的空间分布(经过了M-K趋势检测,正值代表GPP有显著增加趋势(p<0.05),负值代表GPP有显著下降趋势(p<0.05),灰色代表没有显著变化趋势(p>0.05))审图号:GS(2016)2886
图7  2003~2017年中国GPP年总量
图8  2003~2017年中国GPP年总量年际变化
1 Quere C L, Raupach M R, Canadell J G, et al. Trends in the Sources and Sinks of Carbon Dioxide[J]. Nature Geoscience, 2009, 2(12):831-836. doi: 10.1038/ngeo689.
doi: 10.1038/ngeo689
2 Zhang Y, Xu M, Chen H, et al. Global Pattern of NPP to GPP Ratio derived from MODIS Data: Effects of Ecosystem Type, Geographical Location and Climate[J]. Global Ecology and Biogeography, 2009, 18(3):280-290. doi: 10.1111/j.1466-8238.2008.00442.x.
doi: 10.1111/j.1466-8238.2008.00442.x
3 Running S W. Climate Change Ecosystem Disturbance, Carbon, and Climate[J]. Science, 2008, 321(5889):652-653. doi: 10.1126/science.1159607.
doi: 10.1126/science.1159607
4 Pan Y, Birdsey R A, Fang J, et al. A Large and Persistent Carbon Sink in the World's Forests[J]. Science, 2011, 333(6045):988-993. doi: 10.1126/science.1201609.
doi: 10.1126/science.1201609
5 Turner D P, Ollinger S V, Kimball J S. Integrating Remote Sensing and Ecosystem Process Models for Landscape to Regional Scale Analysis of the Carbon Cycle[J]. BioScience, 2004, 54(6):573-584. doi: 10.1641/0006-3568(2004)054[0573:IRSAEP]2.0.CO;2.
doi: 10.1641/0006-3568(2004)054
6 Field C B, Randerson J T, Malmstroem C M. Global Net Primary Production: Combining Ecology and Remote Sensing[J]. Remote Sensing of Environment, 1995, 51(1):77-88. doi: 10.1016/0034-4257(94)00066-V.
doi: 10.1016/0034-4257(94)00066-V
7 Chen J M, Black T A. Defining Leaf Area Index for Non-flat Leaves[J]. Plant Cell and Environment, 1992, 15(4):421-429. doi: 10.1111/j.1365-3040.1992.tb00992.x.
doi: 10.1111/j.1365-3040.1992.tb00992.x
8 Myneni R B, Hoffman S, Knyazikhin Y, et al. Global Products of Vegetation Leaf Area and Fraction Absorbed PAR from Year One of MODIS Data[J]. Remote Sensing of Environment, 2002, 83(1-2):214-231. doi: 10.1016/S0034-4257(02)00074-3.
doi: 10.1016/S0034-4257(02)00074-3
9 Liu Y, Liu R, Chen J M. Retrospective Retrieval of Long-term Consistent Global Leaf Area Index (1981-2011) from Combined AVHRR and MODIS Data[J]. Journal of Geophysical Research, 2012, 117(G0403). doi: 10.1029/2012JG002084.
doi: 10.1029/2012JG002084
10 Zhu Z, Bi J, Pan Y, et al. Global Data Sets of Vegetation Leaf Area Index (LAI)3g and Fraction of Photosynthetically Active Radiation (FPAR)3g Derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the Period 1981 to 2011[J]. Remote Sensing, 2013, 5(2):927-948. doi: 10.3390/rs5020927.
doi: 10.3390/rs5020927
11 Xiao Z, Liang S, Wang J, et al. Use of General Regression Neural Networks for Generating the GLASS Leaf Area Index Product from Time-series MODIS Surface Reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 52(1):209-223. doi: 10.1109/TGRS.2013.2237780.
doi: 10.1109/TGRS.2013.2237780
12 Baret F, Weiss M, Lacaze R, et al. GEOV1: LAI and FAPAR Essential Climate Variables and FCOVER Global Time Series Capitalizing over Existing Products. Part1: Principles of Development and Production[J]. Remote Sensing of Environment,2013,137:299-309. doi: 10.1016/j.rse.2012. 12.027.
doi: 10.1016/j.rse.2012. 12.027
13 Fang H, Baret F, Plummer S, et al. An Overview of Global Leaf Area Index (LAI): Methods, Products, Validation, and Applications[J]. Reviews of Geophysics, 2019, 57(3):739-799. doi: 10.1029/2018RG000608.
doi: 10.1029/2018RG000608
14 Zhang Y, Song C, Band L, et al. Reanalysis of Global Terrestrial Vegetation Trends from MODIS Products: Browning or Greening?[J]. Remote Sensing of Environment, 2017, 191:145-155. doi: 10.1016/j.rse.2016.12.018.
doi: 10.1016/j.rse.2016.12.018
15 Xiao Z, Liang S, Jiang B. Evaluation of Four Long Time-series Global Leaf Area Index Products[J]. Agricultural and Forest Meteorology, 2017, 246:218-230. doi: 10.1016/j.agrformet.2017.06.016.
doi: 10.1016/j.agrformet.2017.06.016
16 Jiang C, Ryu Y, Fang H, et al. Inconsistencies of Interannual Variability and Trends in Long-term Satellite Leaf Area Index Products[J]. Global Change Biology, 2017, 23(10):4133-4146. doi: 10.1111/gcb.13787.
doi: 10.1111/gcb.13787
17 Liu Y, Xiao J, Ju W, et al. Satellite-derived LAI Products Exhibit Large Discrepancies and Can Lead to Substantial Uncertainty in Simulated Carbon and Water Fluxes[J]. Remote Sensing of Environment, 2018, 206:174-188. doi: 10.1016/j.rse.2017.12.024.
doi: 10.1016/j.rse.2017.12.024
18 Xie X, Li A, Jin H, et al. Assessment of Five Satellite-derived LAI Datasets for GPP Estimations through Ecosystem Models[J]. Science of the Total Environment, 2019, 690:1120-1130. doi: 10.1016/j.scitotenv.2019.06.516.
doi: 10.1016/j.scitotenv.2019.06.516
19 Fang H, Wei S, Liang S. Validation of MODIS and CYCLOPES LAI Products Using Global Field Measurement Data[J]. Remote Sensing of Environment, 2012, 119:43-54. doi: 10.1016/j.rse.2011.12.006.
doi: 10.1016/j.rse.2011.12.006
20 Xiao Z, Liang S, Wang J, et al. Use of General Regression Neural.Networks for Generating the GLASS Leaf Area Index Product from Time Series MODIS Surface Reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1):209-223. doi: 10.1109/TGRS.2013.2237780.
doi: 10.1109/TGRS.2013.2237780
21 Xiao Z, Liang S, Wang J, et al. Long Time-series Global Land Surface Satellite(GLASS) Leaf Area Index Product Derived from MODIS and AVHRR Surface Reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016,54(9):5301-5318. doi:10.1109/TGRS.2016. 2560522.
doi: 10.1109/TGRS.2016. 2560522
22 Liu Yibo. The Spatial and Temporal Variations of Water Use Efficiency in China’s Terrestrial Ecosystems Simulated Using Remote Sensing and a Process-based Model[D]. Nanjing: Nanjing University, 2015.
22 柳艺博. 基于遥感和过程模型的中国陆地生态系统水分利用效率时空变化特征研究[D]. 南京: 南京大学, 2013.
23 Yu G, Wen X, Sun X, et al. Overview of ChinaFLUX and Evaluation of Its Eddy Covariance Measurement[J]. Agricultural and Forest Meteorology, 2006, 137(3-4):125-137. doi: 10.1016/j.agrformet.2006.02.011.
doi: 10.1016/j.agrformet.2006.02.011
24 He M, Zhou Y, Ju W, et al. Development of a Two-leaf Light Use Efficiency Model for Improving the Calculation of Terrestrial Gross Primary Productivity[J]. Agricultural and Forest Meteorology, 2013, 173:28-39. doi: 10.1016/j.agrformet.2013.01.003.
doi: 10.1016/j.agrformet.2013.01.003
25 Zhou Y, Wu X, Ju W, et al. Global Parameterization and Validation of a Two-leaf Light Use Efficiency Model for Predicting Gross Primary Production across FLUXNET Sites[J]. Journal of Geophysical Research: Biogeosciences, 2015, 121(4):1045-1072. doi: 10.1002/2014JG002876.
doi: 10.1002/2014JG002876
26 Wu Xiaocui. Impacts of Changes in Solar Radiation on Terrestrial Gross Primary Productivity in China[D]. Nanjing: Nanjing University, 2015.
26 吴小翠. 中国地区辐射变化对陆地生态系统总初级生产力的影响[D]. 南京: 南京大学, 2015.
27 Zan M, Zhou Y, Ju W, et al. Performance of a Two-leaf Light Use Efficiency Model for Mapping Gross Primary Productivity against Remotely Sensed Sun-induced Chlorophyll Fluorescence Data[J]. Science of the Total Environment, 2018, 613:977-989. doi: 10.1016/j.agrformet.2013.01.003.
doi: 10.1016/j.agrformet.2013.01.003
28 Shan Liang, Zhou Yanlian. Consistency Analysis of Global GPP Products and GPP Simulated by Two-leaf Light Use Efficiency Model[J]. Journal of Shanxi Normal University(Natural Science Edition), 2019, 47(3):103-114.
28 单良, 周艳莲. 两叶光能利用率模拟结果与全球GPP产品的时空一致性[J].陕西师范大学学报(自然科学版),2019,47(3):103-114.
29 Zheng Y, Shen R, Wang Y, et al. Improved Estimate of Global Gross Primary Production for Reproducing Its Long-term Fariation, 1982-2017[J]. Earth System Science Data Discussion, 2019, in Review. doi: 10.5194/essd-2019-126.
doi: 10.5194/essd-2019-126
30 Ma J, Xiao X, Miao R, et al. Trends and Controls of Terrestrial Gross Primary Productivity of China during 2000-2016[J]. Environmental Reseach Letters, 2019, 14(084032). doi: 10.1088/1748-9326/ab31e4.
doi: 10.1088/1748-9326/ab31e4
31 Running S W, Nemani R R, Heinsch F A, et al. A Continuous Satellite-derived Measure of Global Terrestrial Primary Production[J]. BioScience, 2004, 54(6):547-560. doi: 10.1641/0006-3568(2004)054[0547:ACSMOG]2.0.CO;2.
doi: 10.1641/0006-3568(2004)054
32 Li X, Liang S, Yu G, et al. Estimation of Gross Primary Production over the Terrestrial Ecosystems in China[J]. Ecological Modelling, 2013, 261:80-92. doi: 10.1016/j.ecolmodel.2013.03.024.
doi: 10.1016/j.ecolmodel.2013.03.024
33 Yao Y, Wang X, Li Y, et al. Spatiotemporal Pattern of Gross Primary Productivity and Its Covariation with Climate in China over the Last Thirty Years[J]. Global Change Biology, 2018, 24(1):184-96. doi: 10.1111/gcb.13830.
doi: 10.1111/gcb.13830
34 Chen W, Zhu D, Huang C, et al. Negative Extreme Events in Gross Primary Productivity and Their Drivers in China during the Past Three Decades[J]. Agricultural and Forest Meteorology,2019,275:47-58.doi:10.1016/j.agrformet.2019. 05.002.
doi: 10.1016/j.agrformet.2019. 05.002
35 Li X, Zhu Z, Zheng H, et al. Estimation of Gross Primary Production in China (1982–2010) with Multiple Ecosystem Models[J]. Ecological Modelling, 2016, 324:33-44. doi: 10.1016/j.ecolmodel.2015.12.019.
doi: 10.1016/j.ecolmodel.2015.12.019
36 Verbeeck H, Samson R, Verdonck F, et al. Parameter Sensitivity and Uncertainty of the Forest Carbon Flux Model FORUG: A Monte Carlo Analysis[J]. Tree Physiology, 2006, 26(6):807-817. doi: 10.1093/treephys/26.6.807.
doi: 10.1093/treephys/26.6.807
37 Chen J M, Ju W, Ciais P, et al. Vegetation Structural Change Since 1981 Significantly Enhanced the Terrestrial Carbon Sink[J]. Nature Communications, 2019, 10(4259). doi: 10.1038/s41467-019-12257-8.
doi: 10.1038/s41467-019-12257-8
38 Smith W K, Reed S C, Cleveland C C, et al. Large Divergence of Satellite and Earth System Model Estimates of Global Terrestrial CO2 Fertilization[J]. Nature Climate Change, 2016, 6(3):306-310. doi: 10.1038/nclimate2879.
doi: 10.1038/nclimate2879
39 Yuan W, Cai W, Xia J, et al. Global Comparison of Light Use Efficiency Models for Simulating Terrestrial Vegetation Gross Primary Production based on the LaThuile Database[J]. Agricultural and Forest Meteorology, 2014, 192:108-120. doi: 10.1016/j.agrformet.2014.03.007.
doi: 10.1016/j.agrformet.2014.03.007
40 Zhao M, Running S W, Nemani, R R. Sensitivity of Moderate Resolution Imaging Spectroradiometer (MODIS) Terrestrial Primary Production to the Accuracy of Meteorological Reanalyses[J]. Journal of Geophysical Research Biogeoscience, 2006, 111(G01002). doi: 10.1029/2004JG000004.
doi: 10.1029/2004JG000004
[1] 冯艾琳,武晋雯,孟莹,姜鹏,董巍,张璇,方缘,刘斌. 基于MODIS GPP数据产品的辽宁省碳源/汇空间格局分布研究[J]. 遥感技术与应用, 2019, 34(4): 857-864.
[2] 程雪,贺炳彦,黄耀欢,孙志刚,李鼎,朱婉雪. 基于无人机高光谱数据的玉米叶面积指数估算[J]. 遥感技术与应用, 2019, 34(4): 775-784.
[3] 云增鑫, 郑光, 马利霞, 王晓菲, 卢晓曼, 路璐. 联合主被动遥感数据定量评价林下植被对叶面积指数估算的影响[J]. 遥感技术与应用, 2019, 34(3): 583-594.
[4] 王莹莹, 袁金国, 张莹, 吴朝阳. 中国温带地区植被物候期时空变化特征及对总初级生产力的影响[J]. 遥感技术与应用, 2019, 34(2): 377-388.
[5] 马敏娜,袁文平. 青藏高原总初级生产力估算的模型差异[J]. 遥感技术与应用, 2017, 32(3): 406-418.
[6] 靳华安,李爱农,边金虎,赵伟,张正健,南希. 西南地区不同山地环境梯度叶面积指数遥感反演[J]. 遥感技术与应用, 2016, 31(1): 42-50.
[7] 李铮,柏延臣,何亚倩. 遥感叶面积指数产品提取自然植被物候期对比[J]. 遥感技术与应用, 2015, 30(6): 1103-1112.
[8] 刘艳, 王锦地, 周红敏, 薛华柱. 黑河中游试验区不同分辨率LAI数据处理、分析和尺度转换[J]. 遥感技术与应用, 2010, 25(6): 805-813.