Please wait a minute...
img

官方微信

遥感技术与应用  2020, Vol. 35 Issue (5): 1028-1036    DOI: 10.11873/j.issn.1004-0323.2020.5.1028
LAI专栏     
近30 a中国叶面积指数变化趋势的不确定性评估
桑宇星1(),刘刚1,江聪1,2,任舒艳1,2,朱再春1()
1.北京大学城市规划与设计学院,深圳 518055
2.北京大学城市与环境学院,北京 100871
Uncertainty Assessment of the Trend of China's Leaf Area Index in the Past 30 Years
Yuxing Sang1(),Gang Liu1,Cong Jiang1,2,Shuyan Ren1,2,Zaichun Zhu1()
1.School of Urban Planning and Design,Peking University,Shenzhen 518055,China
2.College of Urban and Environmental Sciences,Peking University,Beijing 100871,China
 全文: PDF(6112 KB)   HTML
摘要:

基于四套遥感叶面积指数(leaf area index, LAI)长时间序列数据集(MODIS LAI, GLOBMAP LAI, GLASS LAI和GIMMS LAI3g),从各数据集版本更新的角度评估了中国近30 a LAI变化趋势的不确定性,对比了新旧版本的LAI变化趋势在均值、空间分布和不同植被类型上的差异。结果表明:各遥感LAI数据集新旧版在全国植被LAI过去30 a的总体趋势上差异不显著,但GLASS LAI显著高于GIMMS LAI3g和GLOBMAP LAI。各数据集版本更新所导致的不确定性集中体现在2000年以后,新版本中国LAI平均趋势(12.1±2.1×10-3m2/(m2·year))高于旧版本趋势(7.9±2.0×10-3m2/(m2·year));新版本LAI增加的趋势在东南沿海、东北、云贵高原和黄土高原地区更高;LAI趋势和净增长的差异集中在农田,草地,灌木和常绿针叶林。定量分析了4套被广泛使用的遥感LAI时间序列数据集不同版本之间的差异,为后续中国地区的相关研究在数据选择上提供了参考。

关键词: 叶面积指数遥感植被动态变化中国    
Abstract:

In order to evaluate the temporal and spatial uncertainty of the trend of the Leaf Srea Index (LAI) in China caused by the update of the versions, four sets of long-term LAI datasets are used (MODIS LAI, GLOBMAP LAI, GLASS LAI and GIMMS LAI3g), and the trends in total, spatial distribution and different vegetation types between the former and last versions were compared. Results showed that the positive trend in GLASS LAI is higher than that in GLOBMAP LAI and GIMMS LAI during the past 30 years but the discrepancy between versions is not obvious. However, the uncertainty due to update of the versions occurs after 2000. The trend of last version (12.1±2.1×10-3m2/(m2·year1)) is higher than former version (7.9±2.0×10-3 m2/(m2·year1)), and the higher trends value mainly appear in the southeast coastal areas, the northeast China, the Yunnan-Guizhou Plateau and the Loess Plateau. The differences in trends and the net change of LAI are concentrated in the vegetation types of cropland, grassland, shrubland and evergreen coniferous forests. The study quantifies the uncertainty of China’s trend of LAI among versions and offers references of data choice for further LAI researches in China.

Key words: Leaf Area Index(LAI)    Remote sensing    Vegetation dynamics    China
收稿日期: 2020-07-15 出版日期: 2020-11-26
ZTFLH:  TP79  
基金资助: 国家自然科学基金项目(41901122)
通讯作者: 朱再春     E-mail: yuxingsang@pku.edu.cn;zhuzaichun@pku.edu.cn
作者简介: 桑宇星(1997-),女,安徽芜湖人,硕士研究生,主要从事全球变化生态学研究。E?mail:yuxingsang@pku.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
桑宇星
刘刚
江聪
任舒艳
朱再春

引用本文:

桑宇星,刘刚,江聪,任舒艳,朱再春. 近30 a中国叶面积指数变化趋势的不确定性评估[J]. 遥感技术与应用, 2020, 35(5): 1028-1036.

Yuxing Sang,Gang Liu,Cong Jiang,Shuyan Ren,Zaichun Zhu. Uncertainty Assessment of the Trend of China's Leaf Area Index in the Past 30 Years. Remote Sensing Technology and Application, 2020, 35(5): 1028-1036.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2020.5.1028        http://www.rsta.ac.cn/CN/Y2020/V35/I5/1028

数据集版本驱动数据空间分辨率时间分辨率覆盖时间
MODISMOD15A2(C5)MODIS地表反射率(C5)1 km8天2000~2013
MCD15A3H(C6)MODIS地表反射率(C6)500 m4天2003~2018
GLOBMAPV1GIMMS NDVI&MODIS地表反射率(C5)1/12°&0.05°半月&8天1982~2011
V3GIMMS NDVI&MODIS地表反射率(C6)1/12°&0.05°半月&8天1982~2016
GLASSV3LTDR地表反射率&MODIS地表反射率(C5)0.05°8天1982~2011
V4LTDR地表反射率&MODIS地表反射率(C5)0.05°8天1982~2015
GIMMS3gV2GIMMS NDVI1/12°8天1982~2015
V4GIMMS NDVI1/12°8天1982~2015
表1  本研究中使用的LAI新旧版本数据集
图1  LAI产品在1982~2018年间中国生长季LAI距平
年份MODISGLOBMAPGLASSGIMMSLAI均值
1982~2000LAIFVa趋势-1.9±0.6*10.5±2.6*6.5±2.66.5±1.4*
LAILV趋势-1.8±1.37.8±2.9*5.6±1.4*5.2±1.5*
年际波动R2-0.70.80.90.9
2000~2011/2000~2015bLAIFV趋势3.0±3.22.9±2.96.3±2.7*8.0±2.7*7.9±2.0*
LAILV趋势14.8±1.9*18.6±1.7*8.5±3.0*7.9±1.6*12.1±2.1*
年际波动R20.79a0.40.90.80.8
1982~2011/1982~2015LAIFV趋势-4.7±0.5*14.6±1.1*4.8±0.8*8.2±0.5*
LAILV趋势-4.4±0.7*13.8±1.1*4.3±0.5*7.4±0.5*
年际波动R2-0.30.90.90.9
表2  中国生长季LAI趋势及波动对比 (趋势:(10-3m2/m2·a))
图2  近30 a中国生长季LAI趋势空间格局及版本差异
图3  近30 a不同植被类型生长季LAI净增长面积(106 km2)
图4  近30 a不同植被类型生长季LAI趋势(10-3m2/(m2·year))
1 Wang Xiqun, Ma Luyi, Jia Zhongkui, et al. Research and Application Advances in Leaf area Index(LAI)[J]. Chinese Journal of Ecology, 2005, 24(5): 537-541.
1 王希群, 马履一, 贾忠奎, 等. 叶面积指数的研究和应用进展[J]. 生态学杂志,2005, 24(5): 537-541.
2 Asrar G, Fuchs M, Kanemasu E T, et al. Estimating Absorbed Photosynthetic Radiation and Leaf Area Index from Spectral Reflectance in Wheat1[J]. Agronomy Journal, 1984, 76(2): 300-306.
3 Liu Yang, Liu Ronggao, Chen Jingming,et al. Current Status and Perspectives of Leaf Area Index Retrieval from Optical Remote Sensing Data [J]. Journal of Geo-information Science, 2013,15(5): 734-743.
3 刘洋, 刘荣高, 陈镜明, 等. 叶面积指数遥感反演研究进展与展望[J]. 地球信息科学学报, 2013, 15(5): 734-743.
4 Zheng Z T, Zhu W Q. Uncertainty of Remote Sensing Data in Monitoring Vegetation Phenology: A Comparison of MODIS C5 and C6 Vegetation Index Products on the Tibetan Plateau[J]. Remote Sensing, 2017, 9:1288. doi:org/10.3390/rs 9121288.
doi: org/10.3390/rs 9121288
5 Deng F, Chen J M, Plummer S, et al. Algorithm for Global Leaf Area Index Retrieval Using Satellite Imagery[J]. Geoscience and Remote Sensing, 2006, 44(8): 2219-2229.
6 Knyazikhin, Y, Martonchik J V, Myneni R B, et al. Synergistic Algorithm for Estimating Vegetation Canopy Leaf Area Index and Fraction of Absorbed Photosynthetically Active Radiation from MODIS and MISR Data[J]. Journal of Geophy-sical Research-Atmospheres. 1998, 103(D24): 32257-32275.
7 Liu Y, Liu R G, Chen J M. Retrospective Retrieval of Long-term Consistent Global Leaf Area Index (1981-2011) from Combined AVHRR and MODIS Data[J]. Journal of Geophysical Research (Biogeosciences), 2012,117:4003. doi:org/ 10.1029/202JG002094.
doi: org/ 10.1029/202JG002094
8 Xiao Z Q, Liang S L, Jiang B. Evaluation of Four Long Time-series Global Leaf Area Index Products[J]. Agricultural and Forest Meteorology, 2017, 246: 218-230.
9 Zhu Z C, Bi J, Pan Y Z, et al. Global Data Sets of Vegetation Leaf Area Index (LAI) 3g and Fraction of Photosynthetically Active Radiation (FPAR) 3g Derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the Period 1981 to 2011[J]. Remote Sensing, 2013, 5: 927-948.
10 Xiao Z Q, Liang S L, Wang J D, et al. Long-Time-Series Global Land Surface Satellite Leaf Area Index Product Derived from MODIS and AVHRR Surface Reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(9): 5301-5318.
11 Peng Fei, Sun Guodong. Variation of Leaf Area Index in China from 1982 to 1999 and Its Relationship with Climate Change[J]. Climatic and Enviromental Research, 2017, 22(2): 162-176.
11 彭飞, 孙国栋. 1982~1999年中国地区叶面积指数变化及其与气候变化的关系[J]. 气候与环境研究, 2017, 22(2): 162-176.
12 Liang X Y, Zhang T, Lu X K, et al. Global Response Patterns of Plant Photosynthesis to Nitrogen Addition: A Meta‐analysis[J]. Global Change Biology, 2020, 26(6): 3585-3600.
13 Reygadas Y, Jensen J L R, Moisen G G, et al. Assessing the Relationship between Vegetation Greenness and Surface Temperature Through Granger Causality and Impulse-Response Coefficients: A Case Study in Mexico[J]. International Journal of Remote Sensing, 2020, 41(10): 3761-3783.
14 Zhu Z C, Piao S L, Myneni R, et al. Greening of the Earth and Its Drivers[J]. Nature Climate Change, 2016, 6(8): 791-795.
15 Yuan W P, Zhen Y, Piao S L, et al. Increased Atmospheric Vapor Pressure Deficit Reduces Global Vegetation Growth[J]. Science Advances, 2019, 5(8): 1396. doi:org/10.1126/ siadv.aax1396.
doi: org/10.1126/ siadv.aax1396
16 Zhang Y L, Song C H, Band L, et al. Reanalysis of Global Terrestrial Vegetation Trends from MODIS Products: Browning or Greening [J]. Remote Sensing of Environment, 2017, 191: 145-155.
17 Lyapustin A, Wang Y, Xiong X, et al. Scientific Impact of MODIS C5 Calibration Degradation and C6 + Improvements[J]. Atmospheric Measurement Techniques, 2014, 7(12):4353-4365.
18 Wang D, Morton D, Masek J, et al. Impact of Sensor Degradation on the MODIS NDVI Time Series[J]. Remote Sensing of Environment, 2012, 119:55-61.
19 Piao S L, Sitch S, Ciais P, et al. Evaluation of Terrestrial Carbon Cycle Models for Their Response to Climate Variability and to CO2 Trends[J]. Global change biology, 2013, 19(7): 2117-2132.
20 Xiao Z, Liang S, Wang J, et al. Use of General Regression Neural Networks for Generating the GLASS Leaf Area Index Product from Time-series MODIS Surface Reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52: 209-223.
21 Chen C, Park T, Wang X H, et al. China and India Lead in Greening of the World Through Land-use Management[J]. Nature Sustainability, 2019, 2(2): 122-129.
22 Piao S L, Wang X H, Park T, et al. Characteristics, Drivers and Feedbacks of Global Greening [J]. Nature Reviews Earth & Environment, 2020, 1: 14-27.
23 Chen Y Z Chen L Y, Cheng Y, et al. Afforestation Promotes the Enhancement of Forest LAI and NPP in China[J]. Forest Ecology and Management, 2020, 462: 117990.
24 Wang Feng, Yang Dongkai, Li Weiqiang, et al. GNSS-R Delay Mapping Processing Method based on Block Averaging Pre-processin[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(10): 1943-1949.
24 王峰, 杨东凯, 李伟强, 等. 基于块平均预处理的GNSS-R延迟映射处理方法[J]. 北京航空航天大学学报, 2015, 41(10):1943-1949.
25 Liu Fei, Wu Limei, Chen Lichun, et al. Gis-based Analysis of Temperature Change Trend and Abrupt Change in China in the Past 60 Years[J]. 2015(6): 74-78.刘飞, 武丽梅, 陈礼春, 等. 基于GIS的全国近60年来气温变化趋势及突变分析[J]. 农业科技与信息, 2015(6): 74-78.
26 Ma Peipei, Li Jing, Liu Qinhuo, et al. Multisensor Synergistic Quantitative Leaf Area Index Product of China[J]. Journal of Remote Sensing, 2019, 23(6): 1232–1252.
26 马培培, 李静, 柳钦火, 等. 中国区域MuSyQ叶面积指数产品验证与分析[J]. 遥感学报, 2019, 23(6): 1232-1252.
27 Huang Jianxi, Wang Jiali, Huang Ran, et al. Forecasting of Regional Maize Maturity Using Accumulated Temperature-Solar Radiation Model and Leaf Area Index Integral Area Model[J]. Journal of Agricultural Machinery, 2019,50(12): 133-143.
27 黄健熙, 王佳丽, 黄然, 等. 基于积温—辐射与LAI积分面积模型的玉米成熟期预测[J]. 农业机械学报, 2019, 50(12): 133-143.
28 Luo Yuezheng, Pan Yaying, Zhou Yu. Discrepancies of Satellite-derived Leaf Area Index Products in Zhejiang Province[J]. Research of Agricultural Modernization, 2019, 40(5): 851-861.
28 骆月珍, 潘娅英, 周玉. 不同叶面积指数遥感产品在浙江省的差异比较研究[J].农业现代化研究, 2019, 40(5): 851-861.
29 Liang Boyi, Liu Suhong, Qu Ying, et al. Changes in the Amazon Rainforest from 1982 to 2012 Using GLASS LAI Data[J]. Journal of Remote Sensing, 2016, 20(1): 149-156.
29 梁博毅, 刘素红, 瞿瑛, 等. 利用GLASS LAI数据分析1982—2012年亚马逊热带雨林变化[J]. 遥感学报,2016, 20(1): 149-156.
30 Li Zheng, Bo Yanchen, He Yaqian, et al. Comparison of Natural Vegetation Phenology Metrics from Remote Sensing LAI Products [J]. Remote Sensing Technology and Application, 2015, 30(6): 1103-1112.
30 李铮, 柏延臣, 何亚倩, 等. 遥感叶面积指数产品提取自然植被物候期对比[J]. 遥感技术与应用,2015, 30(6): 1103-1112.
[1] 汪垚,方红亮,张英慧,李思佳. 基于机载LVIS和星载GLAS波形LiDAR数据反演森林LAI[J]. 遥感技术与应用, 2020, 35(5): 1004-1014.
[2] 侯吉宇,周艳莲,刘洋. 不同叶面积指数遥感数据模拟中国总初级生产力的时空差异[J]. 遥感技术与应用, 2020, 35(5): 1015-1027.
[3] 严欣荣,官凤英. 竹资源遥感监测研究进展[J]. 遥感技术与应用, 2020, 35(4): 731-740.
[4] 杨瑞,祁元,苏阳. 深度学习U-Net方法及其在高分辨卫星影像分类中的应用[J]. 遥感技术与应用, 2020, 35(4): 767-774.
[5] 王卓,闫浩文,禄小敏,冯天文,李亚珍. 一种改进U-Net的高分辨率遥感影像道路提取方法[J]. 遥感技术与应用, 2020, 35(4): 741-748.
[6] 连喜红,祁元,王宏伟,张金龙,杨瑞. 基于面向对象的青海湖环湖区居民地信息自动化提取[J]. 遥感技术与应用, 2020, 35(4): 775-785.
[7] 韩天,潘小多,王旭峰,黄广辉,韦海宁. 遥感资料在WRF-Chem沙尘模拟中的应用[J]. 遥感技术与应用, 2020, 35(4): 808-819.
[8] 魏石梅, 潘竟虎, 妥文亮. 2015年中国PM2.5浓度遥感估算与时空分布特征[J]. 遥感技术与应用, 2020, 35(4): 845-854.
[9] 潘灼坤,胡月明,王广兴,刘吼海,刘江,李波,樊舒迪. 对遥感在城市更新监测应用中的认知和思考[J]. 遥感技术与应用, 2020, 35(4): 911-923.
[10] 李智礼,匡文慧,张澍. 近70 a天津主城区城市土地利用/覆盖变化遥感监测与时空分析[J]. 遥感技术与应用, 2020, 35(3): 527-536.
[11] 史姝姝,匡文慧,董斯齐. 21世纪以来西安城乡梯度土地覆盖变化及对城市热岛影响时空特征[J]. 遥感技术与应用, 2020, 35(3): 537-547.
[12] 李净,温松楠. 基于3种机器学习法的太阳辐射模拟研究[J]. 遥感技术与应用, 2020, 35(3): 615-622.
[13] 虞瑶,苏红军,姚文静. 基于Boosting的高光谱遥感切空间协同表示集成学习方法[J]. 遥感技术与应用, 2020, 35(3): 634-644.
[14] 马彩虹,关琳琳,陈甫,王大成,刘建波. 基于内容的遥感图像变化信息检索概念模型设计[J]. 遥感技术与应用, 2020, 35(3): 685-693.
[15] 岳昂,曾庆伟,王怀警. 于桥水库蓝藻水华遥感长时序监测研究[J]. 遥感技术与应用, 2020, 35(3): 694-701.