遥感技术与应用 2020, Vol. 35 Issue (5): 1037-1046 DOI: 10.11873/j.issn.1004-0323.2020.5.1037 |
LAI专栏 |
|
|
|
|
生态系统模型模拟中国叶面积指数变化趋势及驱动因子的不确定性 |
刘刚1( ),桑宇星1,赵茜1,江聪1,2,朱再春1( ) |
1.北京大学 城市规划与设计学院,深圳 518055 2.北京大学 城市与环境学院,北京 100871 |
|
Uncertainty of the Ecosystem Models in Simulating the Trend and Drivers of Leaf Area Index in China |
Gang Liu1( ),Yuxing Sang1,Qian Zhao1,Cong Jiang1,2,Zaichun Zhu1( ) |
1.School of Urban Planning and Design,Peking University,Shenzhen 518055,China 2.College of Urban and Environmental Sciences,Peking University,Beijing 100871,China |
引用本文:
刘刚,桑宇星,赵茜,江聪,朱再春. 生态系统模型模拟中国叶面积指数变化趋势及驱动因子的不确定性[J]. 遥感技术与应用, 2020, 35(5): 1037-1046.
Gang Liu,Yuxing Sang,Qian Zhao,Cong Jiang,Zaichun Zhu. Uncertainty of the Ecosystem Models in Simulating the Trend and Drivers of Leaf Area Index in China. Remote Sensing Technology and Application, 2020, 35(5): 1037-1046.
链接本文:
http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2020.5.1037
或
http://www.rsta.ac.cn/CN/Y2020/V35/I5/1037
|
1 |
Chen J M, Black T A. Defining Leaf Area Index for Non‐flat Leaves[J]. Agricultural & Forest Meteorology, 1992, 15 (4): 421-429.
|
2 |
Piao S L, Wang X H, Park T, et al. Characteristics, Drivers and Feedbacks of Global Greening[J]. Nature Reviews Earth & Environment, 2020, 1 (1): 14-27.
|
3 |
Zhu Z C, Bi J, Pan Y Z, et al. Global Data Sets of Vegetation Leaf Area Index (LAI) 3g and Fraction of Photosynthetically Active Radiation (FPAR) 3g Derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the Period 1981 to 2011[J]. Remote Sensing, 2013, 5: 927-948.
|
4 |
Xiao Z, Liang S, Wang J, et al. Long-Time-Series Global Land Surface Satellite Leaf Area Index Product Derived from MODIS and AVHRR Surface Reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54 (9): 5301-5318.
|
5 |
Liu Y, Liu R, Chen J M. Retrospective Retrieval of Long-term consistent Global Leaf Area Index(1981-2011) from Combined AVHRR and MODIS Data[J]. Journal of Geophysical Research Biogeoences, 2015, 117 (G4):1-14.
|
6 |
Piao S L, Yin G D, Tan J G, et al. Detection and Attribution of Vegetation Greening Trend in China over the Last 30 Years[J]. Global Change Biology, 2015, 21 (4): 1601-1609.
|
7 |
Chen C, Park T, Wang X H, et al. China and India Lead in Greening of the World Through Land-use Management[J]. Nature Sustainability, 2019, 2 (2): 122-129.
|
8 |
Zhou L M, Tucker C J, Kaufmann R K, et al. Variations in Northern Vegetation Activity Inferred from Satellite Data of Vegetation Index During 1981 to 1999[J]. Journal of Geophysical Research Atmospheres, 2002, 106(17): 20069-20083.
|
9 |
Piao S L, Fang J Y, Zhou L M, et al. Interannual Variations of Monthly and Seasonal Normalized Difference Vegetation Index (NDVI) in China from 1982 to 1999[J]. Journal of Geophysical Research Atmospheres, 2003, 108 (D14): 4401. doi:10.1029/2002JD002848.
doi: 10.1029/2002JD002848
|
10 |
Peng S S, Piao S L, Ciais P, et al. Asymmetric Effects of Daytime and Night-time Warming on Northern Hemisphere Vegetation[J]. Nature, 2013, 501(7465): 88-92.
|
11 |
Los S O. Analysis of Trends in Fused AVHRR and MODIS NDVI Data for 1982-2006: Indication for a CO2 Fertilization Effect in Global Vegetation[J]. Global Biogeochemical Cycles, 2013, 27(2): 318-330.
|
12 |
Sitch S , Huntingford C , Gedney N , et al. Evaluation of the Terrestrial Carbon Cycle, Future Plant Geography and Climate Carbon Cycle Feedbacks Using Five Dynamic Global Vegetation Models (DGVMs)[J]. Global Change Biology, 2008, 14(9): 2015-2039.
|
13 |
Zhu Z C, Piao S L, Myneni R B, et al. Greening of the Earth and Its Drivers[J]. Environmental Pollution, 2016, 6(8): 791-795.
|
14 |
Gu Fengxue, Huang Mei, Zhang Yuandong, et al. Modeling the Temporal-spatial Patterns of Atmospheric Nitrogen Deposition in China during 1961—2010[J].Acta Ecologica Sinica, 2016, 36(12): 3591-3600.
|
14 |
顾峰雪, 黄玫, 张远东, 等. 1961—2010年中国区域氮沉降时空格局模拟研究[J]. 生态学报, 2016, 36(12): 3591-3600.
|
15 |
Kolby Smith W, Reed S C, Cleveland C C, et al. Large Divergence of Satellite and Earth System Model Estimates of Global Terrestrial CO2 Fertilization[J].Nature Climate Change, 2016, 6(3): 306-310.
|
16 |
Myneni R B, Ramakrishna R, Nemani R, et al. Estimation of Global Leaf Area Index and Absorbed Par Using Radiative Transfer Models[J]. IEEE Transactions on Geoscience & Remote Sensing, 2002, 35 (6): 1380-1393.
|
17 |
Sang Yuxing, Liu Gang, Jiang Cong, et al. Uncertainty Assessment of the Change Trend of China's Leaf Area Index in the Past 30 Years[J]. Remote Sensing Technology and Application, 2020,35(5):1028-1036.
|
17 |
桑宇星, 刘刚, 江聪, 等. 近30 a中国叶面积指数变化趋势的不确定性评估[J]. 遥感技术与应用, 2020,35(5):1028-1036.
|
18 |
Oleson K W, Lawrence D M, Bonan G B, et al. Technical Description of Version4.5 of the Community Land Model (CLM)[M]. Coloracla:NCAR,2013.
|
19 |
Queré C L, Peters G P, Andres R J, et al. Global Carbon Budget 2013[J]. Earth System Science Data, 2013, 6(1): 235-263.
|
20 |
Sitch S, Smith B, Prentice I C, et al. Evaluation of Ecosystem Dynamics, Plant Geography and Terrestrial Carbon Cycling in the LPJ Dynamic Global Vegetation Model[J]. Global Change Biology, 2003, 9(2): 161-185.
|
21 |
Lindeskog M, Arneth A, Bondeau A, et al. Implications of Accounting for Land Use in Simulations of Ecosystem Carbon Cycling in Africa[J]. Earth System Dynamics, 2013, 4(2): 385-407.
|
22 |
Stocker B D, Strassmann K, Joos F. Sensitivity of Holocene Atmospheric CO2 and the Modern Carbon Budget to Early Human Land Use: Analyses with a Process-based Model[J]. Biogeosciences, 2011, 8 (1): 69-88.
|
23 |
Krinner G, Viovy N, De Noblet-Ducoudré N, et al. A Dynamic Global Vegetation Model for Studies of the Coupled Atmosphere-biosphere System[J]. Global Biogeochemical Cycles, 2005, 19 (1): GB1015.doi:10.1029/2003GB002199.
doi: 10.1029/2003GB002199
|
24 |
Zeng N, Neelin J D, Chou C. A Quasi-Equilibrium Tropical Circulation Model--Implementation and Simulation[J]. Journal of the Atmospheric ences, 2000, 57 (11): 1767-1796.
|
25 |
Jain A K, Meiyappan P, Song Y, et al. CO2 Emissions from Land-use Change Affected More by Nitrogen Cycle, Than by the Choice of Land-cover Data[J]. Global Change Biology, 2013, 19(9): 2893-2906.
|
26 |
Raddatz T, Reick C J, Knorr W, et al. Will the Tropical Land Biosphere Dominate the Climate-carbon Cycle Feedback During the Twenty-first Century?[J]. Climate Dynamics, 2007, 29(6): 565-574.
|
27 |
Sitch S, Friedlingstein P, Gruber N, et al. Trends and Drivers of Regional Sources and Sinks of Carbon Dioxide over the Past Two Decades[J]. Biogeosciences Discussions, 2013, 10 (12): 20113-20177.
|
28 |
Piao S L, Sitch S, Ciais P, et al. Evaluation of Terrestrial Carbon Cycle Models for Their Response to Climate Variability and to CO2 Trends[J]. Global Change Biology, 2013, 19 (7): 2117-2132.
|
29 |
Tan K, Ciais P, Piao S L, et al. Application of the ORCHIDEE Global Vegetation Model to Evaluate Biomass and Soil Carbon Stocks of Qinghai-Tibetan Grasslands[J]. Global Biogeochemical Cycles, 2010, 24:1-12.
|
30 |
Kaufmann R K, Zhou L, Tucker C J, et al. Variations in Northern Vegetation Activity Inferred from Satellite Data of Vegetation Index during 1981 to 1999[J]. Journal of Geophysical Research Atmospheres, 2002, 107(D11): ACL-1-ACL 7-3.
|
31 |
Ahlbeck J R. Comment on “Variations in Northern Vegetation Activity Inferred from Satellite Data of Vegetation Index During 1981-1999” by L. Zhou et al[J]. Journal of Geophysical Research Atmospheres,2002,107(D11): ACH-1-ACH 9-2.
|
32 |
Piao S L, Fang J Y, Ciais P, et al. The Carbon Balance of Terrestrial Ecosystems in China[J]. China Basicence, 2010, 458(7241): 1009-1013.
|
33 |
Kolby Smith W, Reed S C, Cleveland C C, et al. Large Divergence of Satellite and Earth System Model Estimates of Global Terrestrial CO2 Fertilization[J]. Nature Climate Change, 2016, 6(3): 306-310.
|
34 |
Piao S L, Ciais P, Huang Y, et al. The Impacts of Climate Change on Water Resources and Agriculture in China[J]. Nature, 2010, 467(7311): 43-51.
|
35 |
Wang W, Ciais P, Nemani R R, et al. Variations in Atmospheric CO2 Growth Rates Coupled with Tropical Temperature[J]. Proceedings of the National Academy of ences of the United States of America, 2013, 110 (32): 13061-13066.
|
36 |
Chen Y Z, Chen L Y, Cheng Y, et al. Afforestation Promotes the Enhancement of Forest LAI and NPP in China[J]. Forest Ecology and Management, 2020: 462.doi:10.1016/j.foreco.2020.117990.
doi: 10.1016/j.foreco.2020.117990
|
37 |
Liu Hongyan. It is Difficult for China’s Greening Through Large-scale Afforestation to Cross the Hu Line[J]. Science China Earth Sciences, 2019, 49 (11): 1831-1832.
|
37 |
刘鸿雁. 中国大规模造林变绿难以越过胡焕庸线[J]. 中国科学:地球科学, 2019, 49(11): 1831-1832.
|
38 |
Anav A, Friedlingstein P, Beer C, et al. Spatiotemporal Patterns of Terrestrial Gross Primary Production: A Review[J]. Reviews of Geophysics, 2015, 53 (3): 785-818.
|
39 |
Guanter L, Zhang Y, Jung M, et al. Global and Time-resolved Monitoring of Crop Photosynthesis with Chlorophyll Fluorescence[J]. Proceedings of the National Academy of Sciences, 2014, 111(14): 1327-1333.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|