Please wait a minute...
img

官方微信

遥感技术与应用  2020, Vol. 35 Issue (5): 1037-1046    DOI: 10.11873/j.issn.1004-0323.2020.5.1037
LAI专栏     
生态系统模型模拟中国叶面积指数变化趋势及驱动因子的不确定性
刘刚1(),桑宇星1,赵茜1,江聪1,2,朱再春1()
1.北京大学 城市规划与设计学院,深圳 518055
2.北京大学 城市与环境学院,北京 100871
Uncertainty of the Ecosystem Models in Simulating the Trend and Drivers of Leaf Area Index in China
Gang Liu1(),Yuxing Sang1,Qian Zhao1,Cong Jiang1,2,Zaichun Zhu1()
1.School of Urban Planning and Design,Peking University,Shenzhen 518055,China
2.College of Urban and Environmental Sciences,Peking University,Beijing 100871,China
 全文: PDF(6587 KB)   HTML
摘要:

为了厘清中国近30 a来植被生长趋势及其对不同环境变化的响应,使用了3套长时间序列遥感叶面积指数(Leaf area index, LAI)数据集以及8套生态系统模型,对LAI变化趋势从总量、空间分布以及不同植被类型进行了分析与归因。总量上,1982~2015年遥感观测的LAI趋势(9.8×10-3m2/m2·a)高于生态系统模型模拟的趋势(4.2×10-3m2/m2·a),大气二氧化碳浓度上升是主要驱动因素((3.5×10-3m2/m2·a);遥感观测到全国79.5%的区域LAI都呈现显著增长的趋势,而生态系统模型模拟LAI的增长面积占比为33.1%;除草地外,生态系统模型低估了其他植被类型的LAI变化趋势。模型对降雨变化的响应过于敏感以及对人为活动模拟能力不足是模型模拟中国LAI变化趋势不确定性的重要来源。本研究定量分析了近30 a中国各种植被变化情况及其驱动因子,并对模型低估中国植被生长进行了解释,为后续中国地区植被相关研究提供了参考。

关键词: 叶面积指数中国遥感生态系统模型    
Abstract:

In order to clarify the trend of vegetation growth and its response to the changing environment factors in China during the past 30 years, three sets of long-term satellite-based LAI (Leaf Area Index) datasets and eight process-based ecosystem models are used to analyze the trend of LAI and its attribution. In the total, the trend of satellite-based LAI datasets (9.8×10-3m2/(m2·year1)) during 1982~2015 is much higher than ecosystem process-based models LAI datasets (4.2×10-3m2/(m2·year1)), in which CO2 is the dominant contributor (3.5×10-3m2/(m2·year1)). In the spatial pattern, the satellite-based LAI datasets show that about 79.5% of area in which LAI has a significant increasing trend, while about 33.1% of the area in which LAI simulated by process-based ecosystem models shows a growth trend. Except for grassland, the other vegetation types all shows that the LAI from models underestimates the growth of vegetation. The response to the changes of precipitation is too sensitive in models and models’ insufficient ability to simulate human activities are important sources of uncertainty in the model’s simulating the trend of LAI in China. The study quantitatively analyzes the change of LAI and its drivers of various vegetation types in China in the past 30 years, and conducted attribution analysis. This study also explains the underestimation of vegetation growth in process-based ecosystem models, which provides a reference for subsequent research on vegetation in China.

Key words: Leaf Area Index(LAI)    China    Remote sensing    Ecosystem model
收稿日期: 2020-08-17 出版日期: 2020-11-26
ZTFLH:  TP79  
基金资助: 国家自然科学基金项目“全球植被叶面积指数未来变化趋势研究”(41901122)
通讯作者: 朱再春     E-mail: LGang@pku.edu.cn;zhu.zaichun@pku.edu.cn
作者简介: 刘刚(1998-),男,湖北武汉人,硕士研究生,主要从事全球变化生态学研究。E?mail:LGang@pku.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘刚
桑宇星
赵茜
江聪
朱再春

引用本文:

刘刚,桑宇星,赵茜,江聪,朱再春. 生态系统模型模拟中国叶面积指数变化趋势及驱动因子的不确定性[J]. 遥感技术与应用, 2020, 35(5): 1037-1046.

Gang Liu,Yuxing Sang,Qian Zhao,Cong Jiang,Zaichun Zhu. Uncertainty of the Ecosystem Models in Simulating the Trend and Drivers of Leaf Area Index in China. Remote Sensing Technology and Application, 2020, 35(5): 1037-1046.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2020.5.1037        http://www.rsta.ac.cn/CN/Y2020/V35/I5/1037

图1  1982~2015年中国生长季LAI距平(m2/m2)
图2  1982~2015年中国生长季LAI趋势空间格局(10-2m2/m2·a)
图3  中国生长季LAI趋势各驱动因子的贡献及主导因子
图4  不同植被类型生长季LAI趋势及其驱动力(10-2m2/(m2·a))
图5  1982~2015年环境因子趋势及遥感观测的 LAI趋势与模型模拟的 LAI趋势差值
1 Chen J M, Black T A. Defining Leaf Area Index for Non‐flat Leaves[J]. Agricultural & Forest Meteorology, 1992, 15 (4): 421-429.
2 Piao S L, Wang X H, Park T, et al. Characteristics, Drivers and Feedbacks of Global Greening[J]. Nature Reviews Earth & Environment, 2020, 1 (1): 14-27.
3 Zhu Z C, Bi J, Pan Y Z, et al. Global Data Sets of Vegetation Leaf Area Index (LAI) 3g and Fraction of Photosynthetically Active Radiation (FPAR) 3g Derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the Period 1981 to 2011[J]. Remote Sensing, 2013, 5: 927-948.
4 Xiao Z, Liang S, Wang J, et al. Long-Time-Series Global Land Surface Satellite Leaf Area Index Product Derived from MODIS and AVHRR Surface Reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54 (9): 5301-5318.
5 Liu Y, Liu R, Chen J M. Retrospective Retrieval of Long-term consistent Global Leaf Area Index(1981-2011) from Combined AVHRR and MODIS Data[J]. Journal of Geophysical Research Biogeoences, 2015, 117 (G4):1-14.
6 Piao S L, Yin G D, Tan J G, et al. Detection and Attribution of Vegetation Greening Trend in China over the Last 30 Years[J]. Global Change Biology, 2015, 21 (4): 1601-1609.
7 Chen C, Park T, Wang X H, et al. China and India Lead in Greening of the World Through Land-use Management[J]. Nature Sustainability, 2019, 2 (2): 122-129.
8 Zhou L M, Tucker C J, Kaufmann R K, et al. Variations in Northern Vegetation Activity Inferred from Satellite Data of Vegetation Index During 1981 to 1999[J]. Journal of Geophysical Research Atmospheres, 2002, 106(17): 20069-20083.
9 Piao S L, Fang J Y, Zhou L M, et al. Interannual Variations of Monthly and Seasonal Normalized Difference Vegetation Index (NDVI) in China from 1982 to 1999[J]. Journal of Geophysical Research Atmospheres, 2003, 108 (D14): 4401. doi:10.1029/2002JD002848.
doi: 10.1029/2002JD002848
10 Peng S S, Piao S L, Ciais P, et al. Asymmetric Effects of Daytime and Night-time Warming on Northern Hemisphere Vegetation[J]. Nature, 2013, 501(7465): 88-92.
11 Los S O. Analysis of Trends in Fused AVHRR and MODIS NDVI Data for 1982-2006: Indication for a CO2 Fertilization Effect in Global Vegetation[J]. Global Biogeochemical Cycles, 2013, 27(2): 318-330.
12 Sitch S , Huntingford C , Gedney N , et al. Evaluation of the Terrestrial Carbon Cycle, Future Plant Geography and Climate Carbon Cycle Feedbacks Using Five Dynamic Global Vegetation Models (DGVMs)[J]. Global Change Biology, 2008, 14(9): 2015-2039.
13 Zhu Z C, Piao S L, Myneni R B, et al. Greening of the Earth and Its Drivers[J]. Environmental Pollution, 2016, 6(8): 791-795.
14 Gu Fengxue, Huang Mei, Zhang Yuandong, et al. Modeling the Temporal-spatial Patterns of Atmospheric Nitrogen Deposition in China during 1961—2010[J].Acta Ecologica Sinica, 2016, 36(12): 3591-3600.
14 顾峰雪, 黄玫, 张远东, 等. 1961—2010年中国区域氮沉降时空格局模拟研究[J]. 生态学报, 2016, 36(12): 3591-3600.
15 Kolby Smith W, Reed S C, Cleveland C C, et al. Large Divergence of Satellite and Earth System Model Estimates of Global Terrestrial CO2 Fertilization[J].Nature Climate Change, 2016, 6(3): 306-310.
16 Myneni R B, Ramakrishna R, Nemani R, et al. Estimation of Global Leaf Area Index and Absorbed Par Using Radiative Transfer Models[J]. IEEE Transactions on Geoscience & Remote Sensing, 2002, 35 (6): 1380-1393.
17 Sang Yuxing, Liu Gang, Jiang Cong, et al. Uncertainty Assessment of the Change Trend of China's Leaf Area Index in the Past 30 Years[J]. Remote Sensing Technology and Application, 2020,35(5):1028-1036.
17 桑宇星, 刘刚, 江聪, 等. 近30 a中国叶面积指数变化趋势的不确定性评估[J]. 遥感技术与应用, 2020,35(5):1028-1036.
18 Oleson K W, Lawrence D M, Bonan G B, et al. Technical Description of Version4.5 of the Community Land Model (CLM)[M]. Coloracla:NCAR,2013.
19 Queré C L, Peters G P, Andres R J, et al. Global Carbon Budget 2013[J]. Earth System Science Data, 2013, 6(1): 235-263.
20 Sitch S, Smith B, Prentice I C, et al. Evaluation of Ecosystem Dynamics, Plant Geography and Terrestrial Carbon Cycling in the LPJ Dynamic Global Vegetation Model[J]. Global Change Biology, 2003, 9(2): 161-185.
21 Lindeskog M, Arneth A, Bondeau A, et al. Implications of Accounting for Land Use in Simulations of Ecosystem Carbon Cycling in Africa[J]. Earth System Dynamics, 2013, 4(2): 385-407.
22 Stocker B D, Strassmann K, Joos F. Sensitivity of Holocene Atmospheric CO2 and the Modern Carbon Budget to Early Human Land Use: Analyses with a Process-based Model[J]. Biogeosciences, 2011, 8 (1): 69-88.
23 Krinner G, Viovy N, De Noblet-Ducoudré N, et al. A Dynamic Global Vegetation Model for Studies of the Coupled Atmosphere-biosphere System[J]. Global Biogeochemical Cycles, 2005, 19 (1): GB1015.doi:10.1029/2003GB002199.
doi: 10.1029/2003GB002199
24 Zeng N, Neelin J D, Chou C. A Quasi-Equilibrium Tropical Circulation Model--Implementation and Simulation[J]. Journal of the Atmospheric ences, 2000, 57 (11): 1767-1796.
25 Jain A K, Meiyappan P, Song Y, et al. CO2 Emissions from Land-use Change Affected More by Nitrogen Cycle, Than by the Choice of Land-cover Data[J]. Global Change Biology, 2013, 19(9): 2893-2906.
26 Raddatz T, Reick C J, Knorr W, et al. Will the Tropical Land Biosphere Dominate the Climate-carbon Cycle Feedback During the Twenty-first Century?[J]. Climate Dynamics, 2007, 29(6): 565-574.
27 Sitch S, Friedlingstein P, Gruber N, et al. Trends and Drivers of Regional Sources and Sinks of Carbon Dioxide over the Past Two Decades[J]. Biogeosciences Discussions, 2013, 10 (12): 20113-20177.
28 Piao S L, Sitch S, Ciais P, et al. Evaluation of Terrestrial Carbon Cycle Models for Their Response to Climate Variability and to CO2 Trends[J]. Global Change Biology, 2013, 19 (7): 2117-2132.
29 Tan K, Ciais P, Piao S L, et al. Application of the ORCHIDEE Global Vegetation Model to Evaluate Biomass and Soil Carbon Stocks of Qinghai-Tibetan Grasslands[J]. Global Biogeochemical Cycles, 2010, 24:1-12.
30 Kaufmann R K, Zhou L, Tucker C J, et al. Variations in Northern Vegetation Activity Inferred from Satellite Data of Vegetation Index during 1981 to 1999[J]. Journal of Geophysical Research Atmospheres, 2002, 107(D11): ACL-1-ACL 7-3.
31 Ahlbeck J R. Comment on “Variations in Northern Vegetation Activity Inferred from Satellite Data of Vegetation Index During 1981-1999” by L. Zhou et al[J]. Journal of Geophysical Research Atmospheres,2002,107(D11): ACH-1-ACH 9-2.
32 Piao S L, Fang J Y, Ciais P, et al. The Carbon Balance of Terrestrial Ecosystems in China[J]. China Basicence, 2010, 458(7241): 1009-1013.
33 Kolby Smith W, Reed S C, Cleveland C C, et al. Large Divergence of Satellite and Earth System Model Estimates of Global Terrestrial CO2 Fertilization[J]. Nature Climate Change, 2016, 6(3): 306-310.
34 Piao S L, Ciais P, Huang Y, et al. The Impacts of Climate Change on Water Resources and Agriculture in China[J]. Nature, 2010, 467(7311): 43-51.
35 Wang W, Ciais P, Nemani R R, et al. Variations in Atmospheric CO2 Growth Rates Coupled with Tropical Temperature[J]. Proceedings of the National Academy of ences of the United States of America, 2013, 110 (32): 13061-13066.
36 Chen Y Z, Chen L Y, Cheng Y, et al. Afforestation Promotes the Enhancement of Forest LAI and NPP in China[J]. Forest Ecology and Management, 2020: 462.doi:10.1016/j.foreco.2020.117990.
doi: 10.1016/j.foreco.2020.117990
37 Liu Hongyan. It is Difficult for China’s Greening Through Large-scale Afforestation to Cross the Hu Line[J]. Science China Earth Sciences, 2019, 49 (11): 1831-1832.
37 刘鸿雁. 中国大规模造林变绿难以越过胡焕庸线[J]. 中国科学:地球科学, 2019, 49(11): 1831-1832.
38 Anav A, Friedlingstein P, Beer C, et al. Spatiotemporal Patterns of Terrestrial Gross Primary Production: A Review[J]. Reviews of Geophysics, 2015, 53 (3): 785-818.
39 Guanter L, Zhang Y, Jung M, et al. Global and Time-resolved Monitoring of Crop Photosynthesis with Chlorophyll Fluorescence[J]. Proceedings of the National Academy of Sciences, 2014, 111(14): 1327-1333.
[1] 汪垚,方红亮,张英慧,李思佳. 基于机载LVIS和星载GLAS波形LiDAR数据反演森林LAI[J]. 遥感技术与应用, 2020, 35(5): 1004-1014.
[2] 侯吉宇,周艳莲,刘洋. 不同叶面积指数遥感数据模拟中国总初级生产力的时空差异[J]. 遥感技术与应用, 2020, 35(5): 1015-1027.
[3] 桑宇星,刘刚,江聪,任舒艳,朱再春. 近30 a中国叶面积指数变化趋势的不确定性评估[J]. 遥感技术与应用, 2020, 35(5): 1028-1036.
[4] 严欣荣,官凤英. 竹资源遥感监测研究进展[J]. 遥感技术与应用, 2020, 35(4): 731-740.
[5] 杨瑞,祁元,苏阳. 深度学习U-Net方法及其在高分辨卫星影像分类中的应用[J]. 遥感技术与应用, 2020, 35(4): 767-774.
[6] 王卓,闫浩文,禄小敏,冯天文,李亚珍. 一种改进U-Net的高分辨率遥感影像道路提取方法[J]. 遥感技术与应用, 2020, 35(4): 741-748.
[7] 连喜红,祁元,王宏伟,张金龙,杨瑞. 基于面向对象的青海湖环湖区居民地信息自动化提取[J]. 遥感技术与应用, 2020, 35(4): 775-785.
[8] 韩天,潘小多,王旭峰,黄广辉,韦海宁. 遥感资料在WRF-Chem沙尘模拟中的应用[J]. 遥感技术与应用, 2020, 35(4): 808-819.
[9] 魏石梅, 潘竟虎, 妥文亮. 2015年中国PM2.5浓度遥感估算与时空分布特征[J]. 遥感技术与应用, 2020, 35(4): 845-854.
[10] 潘灼坤,胡月明,王广兴,刘吼海,刘江,李波,樊舒迪. 对遥感在城市更新监测应用中的认知和思考[J]. 遥感技术与应用, 2020, 35(4): 911-923.
[11] 李智礼,匡文慧,张澍. 近70 a天津主城区城市土地利用/覆盖变化遥感监测与时空分析[J]. 遥感技术与应用, 2020, 35(3): 527-536.
[12] 史姝姝,匡文慧,董斯齐. 21世纪以来西安城乡梯度土地覆盖变化及对城市热岛影响时空特征[J]. 遥感技术与应用, 2020, 35(3): 537-547.
[13] 李净,温松楠. 基于3种机器学习法的太阳辐射模拟研究[J]. 遥感技术与应用, 2020, 35(3): 615-622.
[14] 虞瑶,苏红军,姚文静. 基于Boosting的高光谱遥感切空间协同表示集成学习方法[J]. 遥感技术与应用, 2020, 35(3): 634-644.
[15] 马彩虹,关琳琳,陈甫,王大成,刘建波. 基于内容的遥感图像变化信息检索概念模型设计[J]. 遥感技术与应用, 2020, 35(3): 685-693.