Please wait a minute...
img

官方微信

遥感技术与应用  2020, Vol. 35 Issue (5): 1109-1117    DOI: 10.11873/j.issn.1004-0323.2020.5.1109
遥感应用     
基于遥感时空融合的升金湖湿地生态水文结构分析
张晓川1,2,3(),王杰3,4()
1.中国科学院遥感与数字地球研究所 遥感科学国家重点实验室,北京 100101
2.中国科学院大学,北京 100049
3.安徽大学 资源与环境工程学院,安徽 合肥 230601
4.安徽大学 湿地生态保护与修复安徽省重点实验室,安徽 合肥 230601
The Analysis of Eco-hydrological Structure of Shengjin Lake Wetland based on Spatial and Temporal Fusion Technology of Remote Sensing
Xiaochuan Zhang1,2,3(),Jie Wang3,4()
1.State Key Laboratory of Remote Sensing Science,Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences,Beijing 100101,China
2.University of Chinese Academy of Sciences,Beijing 100101,China
3.School of Resources and Environmental Engineering,University of Anhui,Hefei 230601,China
4.Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration,Anhui University,Hefei 230601,China
 全文: PDF(4672 KB)   HTML
摘要:

利用遥感技术开展湖泊湿地生态水文结构分析对维持其生态服务功能具有重要意义,但受大气状况的影响会造成特定水位下可用高分辨率遥感影像的缺失,而遥感时空融合技术为弥补这一缺陷提供了重要途径。以安徽省升金湖湿地为研究区,根据改进后的时空自适应反射率融合模型(ESTARFM)模拟生成高时空分辨率遥感影像,评价模拟遥感影像的数值精度,进而分析了升金湖湿地的生态水文结构。结果表明: ① ESTARFM模型能够有效模拟不同水位下湖泊湿地的高分辨率遥感影像,融合影像与真实影像在近红外波段、短波红外波段反射率的相关系数分别达到0.93和0.91,且输入数据与融合数据的日期间隔越短,模拟精度越高;② 基于不同水体指数的水体提取效果表明,新型组合水体指数(NCWI)更适用于湖泊湿地的水体信息提取;③ 对升金湖湿地生态水文结构分析可知,湿地中心区、适宜活动区和非适宜区分别约占该湿地总面积的32.8%、12.1%和55.1%。

关键词: 时空融合生态水文结构水体指数湿地中心区适宜活动区    
Abstract:

Analyzing the eco-hydrological structure of the lake wetland by remote sensing is of great significance for maintaining its ecological service function. However, the available high-resolution remote sensing images at specific water levels may be absent due to the influence of atmospheric conditions, and the spatial-temporal fusion technology in remote sensing is an important approach to compensate for this deficiency. Shengjin lake wetland in Anhui province was used as the research area in our study. The high spatial-temporal resolution remote sensing images were simulated by the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM), and the numerical accuracy of simulated images were evaluated by comparing with real Landsat8-OLI images. Moreover, five water indices were evaluated and the optimal water index was selected to extract the water information. Finally, the high-resolution remote sensing images at specific water level were simulated to extract the water information and analyze the eco-hydrological structure of Shengjin lake wetland. The results showed that: (1) ESTARFM could effectively simulate high-resolution remote sensing images. The correlation coefficients between fusion images and real images in near-infrared band and short-wave infrared band reached 0.93 and 0.91 respectively, and the Root Mean Square Error(RMS) were 0.06 and 0.036 respectively. Additionally, the shorter the date interval between the input images and the fusion images is, the higher the simulation accuracy will be; (2) The water extraction results of lake wetland were evaluated by different water indices and the New Combined Water Index (NCWI) had the highest accuracy with Kappa coefficient of 0.95 and overall accuracy of 96.78%; (3) The NCWI was adopted to extract water body information in High-resolution remote sensing images at different water levels. According to the analysis of Eco-hydrological structure of Shengjin lake wetland, the wetland central area, appropriate activity area and inappropriate activity area were approximately accounted for 32.8%, 12.1% and 55.1% of the total wetland area respectively.

Key words: Spatial and temporal fusion    Eco-hydrological structure    Water indices    Wetland central area    Appropriate activity area
收稿日期: 2019-03-20 出版日期: 2020-11-26
ZTFLH:  P237  
基金资助: 安徽高校自然科学研究项目(KJ2019A0045);安徽省自然科学基金项目(1608085QD82)
通讯作者: 王杰     E-mail: zhangxc@radi.ac.cn;wangjie@ahu.edu.cn
作者简介: 张晓川(1995-),男,安徽六安人,硕士研究生,主要从事遥感地学分析研究。E?mail:zhangxc@radi.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张晓川
王杰

引用本文:

张晓川,王杰. 基于遥感时空融合的升金湖湿地生态水文结构分析[J]. 遥感技术与应用, 2020, 35(5): 1109-1117.

Xiaochuan Zhang,Jie Wang. The Analysis of Eco-hydrological Structure of Shengjin Lake Wetland based on Spatial and Temporal Fusion Technology of Remote Sensing. Remote Sensing Technology and Application, 2020, 35(5): 1109-1117.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2020.5.1109        http://www.rsta.ac.cn/CN/Y2020/V35/I5/1109

水体指数计算公式
MNDWI [21]Green-SWIR1/Green-SWIR1
EWI [22]Green-NIR-SWIR1/Green+NIR+SWIR1
AWEI [23]Blue+2.5×Green-1.5×NIR+SWIR1-0.25×SWIR2
NCWI [24]Green-SWIR1/NIR+Red
NDWI [25]Green-NIR/Green+NIR
表1  典型水体指数
图1  升金湖湿地概况图
图2  2014年升金湖实测水位图
实验类型组别Landsat 8-OLI(日期)MOD09A1(日期)
精度验证检验一组

2014/05/01 (t1)

2014/10/24 (t3)

2014/05/01 (t1)
2014/09/06 (t2)
2014/10/24 (t3)
检验二组

2014/08/05 (t1)

2014/10/24 (t3)

2014/08/05 (t1)
2014/09/06 (t2)
2014/10/24 (t3)
水文结构分析枯水期

2013/10/05 (t1)

2014/03/14 (t3)

2013/10/05 (t1)
2014/03/14 (t3)
2014/01/01 (t2)
2014/01/09 (t2)
2014/01/17 (t2)
丰水期

2014/05/01(t1)

2014/08/05(t3)

2014/05/01 (t1)
2014/08/05 (t3)
2014/07/12 (t2)
2014/07/20 (t2)
2014/07/20 (t2)
表2  Landsat 8-OLI和MOD09A1数据列表
图3  数据预处理流程图
图4  融合影像与Landsat 8-OLI真实影像比较(2014年9月6日)
图5  融合影像反射率与Landsat 8-OLI真实反射率在近红外与短波红外波段的散点图
图6  不同水体指数水体提取结果
水体指数

总体

精度/%

Kappa

系数

错分

误差/%

漏分

误差/%

AWEI95.060.942.25.5
EWI93.270.923.09.4
MNDWI95.380.932.59.4
NCWI96.780.951.54.8
NDWI93.140.921.85.3
表3  不同水体指数水体提取精度评价
功能区

湿地

中心区

适宜

活动区

非适

宜区

总面积
面积/km2106.8939.26179.13325.28
比例/%32.812.155.1100
表4  升金湖湿地生态功能区面积统计
图7  升金湖湿地生态水文结构图
1 Liu Hongliang. Lake Eutrophication Control[M]. Beijing: China Environmental Science Press, 2011.刘鸿亮.湖泊富营养化控制.[M]. 北京:中国环境科学出版社, 2011.
2 Chen Kaiqi, Tao Jie. Research on Eco-hydrology of River Habitat[J]. Water Resources Protection, 2015, 31(6):52-56.
2 陈凯麒,陶洁.河流生物栖息地的生态水文学研究[J]. 水资源保护, 2015, 31(6): 52-56.
3 Gorla L, Perona P. On Quantifying Ecologically Sustainable Flow Releases in a Diverted River Reach[J]. Journal of hydrology, 2013, 489: 98-107.
4 Homa E S, Brown C, McGarigal K, et al. Estimating Hydrologic Alteration from Basin Characteristics in Massachusetts[J]. Journal of hydrology, 2013, 503: 196-208.
5 Chen Minjian, Wang Liqun, Feng Huali, et al. Theory and Analysis of Wetlands’ Eco-hydrological Configuration[J]. Acta Ecologica Sinica, 2008,28(6):2887-2893.
5 陈敏建,王立群,丰华丽,等.湿地生态水文结构理论与分析[J]. 生态学报, 2008,28(6):2887-2893.
6 Eagleson P S. Ecohydrology: Darwinian Expression of Vegetation Form and Function[M]. Cambridge: Cambridge University Press, 2005.
7 Yang Aimin, Tang Kewang, Wang Hao, et al. Eco-hydrological Regionalization in China[J]. Journal of Hydraulic Engineering2008, 39(3):332-338.杨爱民,唐克旺,王浩,等.中国生态水文分区[J]. 水利学报, 2008, 39(3):332-338.
8 Fu Bojie.Thoughts on the Recent Development of Physical Geongraphy[J]. Progress in Geography,2018,37(1):1-7.
8 傅伯杰.新时代自然地理学发展的思考[J].地理科学进展,2018,37(1):1-7.
9 Sun Qianying, Gao Yanni, Zhang Linbo, et al. Assessment of Ecological and Hydrological Regulation Service of Land Use in Xiamen City[J]. Research of Environmental Sciences, 2019, 32(1):66-73.
9 孙倩莹,高艳妮,张林波,等.基于土地利用的厦门市生态水文调节服务评估[J].环境科学研究, 2019, 32(1):66-73.
10 Xu Ligang, Lai Xijun, Wan Rongrong, et al. Review of the Development of Lake Wetlands Eco-hydrology and Case Studies, 2019, 38(8):1171-1181. [徐力刚, 赖锡军, 万荣荣,等. 湿地水文过程与植被响应研究进展与案例分析[J]. 地理科学进展, 2019, 38(8): 1171-1181.]
11 Tianyu L, Qingmin M. A Mixture Emissivity Analysis Method for Urban Land Surface Temperature Retrieval from Landsat 8 Data[J]. Landscape and Urban Planning, 2018, 179:63-71.
12 Feng L, Hu C, Chen X, et al. Assessment of Inundation Changes of Poyang Lake Using MODIS Observations between 2000 and 2010 [J]. Remote Sensing of Environment, 2012, 121(2):80-92.
13 Cai Dewen, Niu Zheng, Wang Li. Adaptability Research of spatial and Temporal Remote Sensing Data Fusion Technology in Crop Monitoring[J]. Remote Sensing Technology and Application, 2012, 27(6):927-932.
13 蔡德文,牛铮,王力.遥感数据时空融合技术在农作物监测中的适应性研究[J]. 遥感技术与应用, 2012, 27(6):927-932.
14 Shen H, Huang L, Zhang L, et al. Long-term and Fine-scale Satellite Monitoring of the Urban Heat Island Effect by the Fusion of Multi-temporal and Multi-sensor Remote Sensed Data: A 26-Year Case Study of the City of Wuhan in China[J]. Remote Sensing of Environment, 2016, 172: 109-125.
15 Li X, Foody G M, Boyd D S, et al. SFSDAF: An Enhanced FSDAF that Incorporates Sub-pixel Class Fraction Change Information for Spatio-temporal Image Fusion[J]. Remote Sensing of Environment,2020,237(C).doi:10.1016/j.rse. 2019. 111537.
doi: 10.1016/j.rse. 2019. 111537
16 Gao F, Masek J, Schwaller M, et al. On the Blending of the Landsat and MODIS Surface Reflectance: Predicting Daily Landsat Surface Reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44:2207-2218.
17 Zhu X, Chen J, Gao F, et al. An Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model for Complex Heterogeneous Regions[J]. Remote Sensing of Environment, 2010, 114(11): 2610-2623.
18 Dong Shiyuan , Zhang Wenjuan, Xu Junyi, et al. Study of the Improved Similar Pixel Selection Method on ESTARFM[J]. Remote Sensing Technology and Application, 2020, 35(1): 185-193.
18 董世元, 张文娟, 许君一,等. ESTARFM 相似像元选取方法的改进研究[J].遥感技术与应用,2020,35(1):185-193.
19 Hao Guibin, Wu Bo, Zhang Lifu, et al. Temporal and Spatial Variation Analysis of the Area of Siling Co Lake in Tibet based on ESTARFM (1976~2014) [J]. Journal of Geo-Information Science, 2016, 18(6):833-846.
19 郝贵斌,吴波,张立福,等. ESTARFM模型在西藏色林错湖面积时空变化中的应用分析(1976~2014年)[J]. 地球信息科学学报, 2016, 18(6):833-846.
20 Michishita R, Chen L, Chen J, et al. Spatiotemporal Reflectance Blending in a Wetland Environment[J]. International Journal of Digital Earth, 2015, 8(5): 364-382.
21 Xu Hanqiu. A Study on Information Extraction of Water Body with the Modified Normalized Difference Water Index (MNDWI)[J]. Journal of Remote Sensing, 2005, 9(5):589-595.
21 徐涵秋.利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J]. 遥感学报, 2005, 9(5):589-595.
22 Yan Pei, Zhang Youjing, Zhang Yuan. A Study on Information Extraction of Water System in Semi-arid Regions with the Enhanced Water Index (EWI) and GIS based Noise Remove Techniques[J]. Remote Sensing Information, 2007(6):62-67.
22 闫霈,张友静,张元.利用增强型水体指数(EWI)和GIS去噪音技术提取半干旱地区水系信息的研究[J]. 遥感信息, 2007(6):62-67.
23 Feyisa G L, Meilby H, Fensholt R, et al. Automated Water Extraction Index: A New Technique for Surface Water Mapping Using Landsat Imagery[J]. Remote Sensing of Environment, 2014, 140: 23-35.
24 Nie Xinran, Liu Rong, Nie Aiqiu, et al. Study on a New Combined Water Index Model based on TM Image [J]. Jiangsu Agricultural Sciences, 2018,46(24):374-378.
24 聂欣然,刘荣,聂爱球,等.基于TM影像的新型组合水体指数模型研究[J]. 江苏农业科学, 2018, 46(24):374-378.
25 McFeeters S K. The Use of the Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features[J]. International Journal of Remote Sensing, 1996, 17(7): 1425-1432.
26 Vermote E F, Kotchenova S Y. MOD09 (Surface Reflectance) User's Guide [EB/OL]. , 2008.3, 2017.7.
27 Zhang Nannan, Lin Yixin, Zang Shuying. Relationships between Phytoplankton Community in Different Functional Regions and Environmental Factors in Zhalong Wetland, Heilongjiang Province[J]. Journal of Lake Sciences, 2016,28(3):554-565.
27 张囡囡,刘宜鑫,臧淑英.黑龙江扎龙湿地不同功能区浮游植物群落与环境因子的关系[J].湖泊科学,2016,28(3):554-565.
28 Liu Jiping, Ma Changdi. The Spatial Variation in the Patch Stability of Marshes in Xianghai between 1985 and 2015[J]. Acta Ecologica Sinica, 2017,37(4):1261-1269.
28 刘吉平,马长迪.1985~2015年向海沼泽湿地斑块稳定性的空间变化[J].生态学报,2017,37(4):1261-1269.
29 Zhou Linfei, Xu Haotian, Zhang Jing. Landscape Pattern Change and Division of Function Zones in Linghekou Wetland Nature Reserve[J]. Wetland Science, 2016, 14(3):403-407.
29 周林飞,徐浩田,张静.凌河口湿地自然保护区景观格局变化及功能区划分[J].湿地科学, 2016, 14(3):403-407.
[1] 王一帆,徐涵秋. 基于客观阈值与随机森林Gini指标的水体遥感指数对比[J]. 遥感技术与应用, 2020, 35(5): 1089-1098.
[2] 董世元,张文娟,许君一,马建行. ESTARFM相似像元选取方法的改进研究[J]. 遥感技术与应用, 2020, 35(1): 185-193.
[3] 郑明亮,黄方,张鸽. 基于TsHARP模型和STITFM算法的地表温度影像融合研究[J]. 遥感技术与应用, 2018, 33(2): 275-283.
[4] 陈栋栋,赵军. 我国西北干旱区湖泊变化时空特征[J]. 遥感技术与应用, 2017, 32(6): 1114-1125.
[5] 朱钟正,陈玉福,朱文泉,郑周涛. 适用于多目标遥感自动解译的最佳专题指数筛选[J]. 遥感技术与应用, 2017, 32(3): 564-574.
[6] 张楠楠,王文,王胤. 鄱阳湖面积的卫星遥感估计及其与水位关系分析[J]. 遥感技术与应用, 2012, 27(6): 947-953.
[7] 郭振亚,王心源,王传辉,高 超,吴海中. 巢湖流域水体信息提取方法研究[J]. 遥感技术与应用, 2012, 27(3): 443-448.
[8] 刘旭拢,钟凯文,陈志良,黄建明,刘万侠. 基于TM影像的珠江三角洲河道快速提取方法研究[J]. 遥感技术与应用, 2008, 23(1): 57-61.