Please wait a minute...
img

官方微信

遥感技术与应用  2020, Vol. 35 Issue (5): 1197-1205    DOI: 10.11873/j.issn.1004-0323.2020.5.1197
遥感应用     
一带一路沿海超大城市热岛时空特征遥感分析
程雨婷1,2(),刘昭华1,鹿琳琳2(),刘士彪1,李庆亭2
1.江西理工大学建筑与测绘工程学院,江西 赣州 341000
2.中国科学院空天信息创新研究院数字地球重点实验室 北京 100094
Spatio-temporal Dynamics of Surface Urban Heat Island in Coastal Mega Cities along the Belt and Road from Remote Sensing Data
Yuting Cheng1,2(),Zhaohua Liu1,linlin Lu2(),Shibiao Liu1,Qingting Li2
1.School of Architectural and Surveying & Mapping Engineering Jiangxi University of Science and Technology,Ganzhou 314000,China
2.Key Laboratory of Digital Earth Science,Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100094,China
 全文: PDF(6005 KB)   HTML
摘要:

城市热岛不仅影响城市局地及区域气候,而且对城市空气质量、能源消耗、居民健康等有显著的负面作用。利用长时序遥感数据,系统地分析各超大城市热岛的时空特征,能够为城市热岛效应减缓政策的制定提供参考,对带路城市可持续发展具有重要意义。基于2001~2017年MODIS地表温度产品和Landsat土地利用分类数据,以城市热岛强度(Surface Urban Heat Island Intensity, SUHII)作为指标,从季节和年际的角度分析一带一路沿海超大城市2001~2017年热岛效应时空格局的变化。研究结果表明:①2001~2017年期间各超大城市的核心区存在扩张趋势,高强度热岛主要分布在人口活动密集的城市核心区;②年均城市热岛强度最大的城市是卡拉奇,多年SUHII平均值为3.02 ℃,热岛强度显著上升的是金奈(0.07 ℃/a,P<0.1);③各城市热岛强度存在季节性差异,其中夏季城市热岛强度最大的城市是伊斯坦布尔,SUHII平均值为2.88 ℃,冬季城市热岛强度最大的城市是卡拉奇,SUHII平均值为4.45 ℃。

关键词: MODIS土地利用分类沿海超大城市地表温度热岛效应    
Abstract:

Urban heat island not only affects local and regional climate of the city, but also has significant adverse effects on urban air quality, energy consumption and human health. By using long time series of remote sensing data, the systematic analysis of the temporal and spatial characteristics of the heat island in megacities can provide helpful information for the formulation of policies for urban heat island effect mitigation, and thus is of great importance for the urban sustainable development in the Belt and Road region. Based on the MODIS land surface temperature products from 2001 to 2017 and land use classification data from Landsat, the spatiotemporal changes of the surface urban heat island effect were analyzed from the seasonal and inter-annual perspectives in the coastal mega cities by using the Surface Urban Heat Island Intensity (SUHII) as an indicator. The analysis results showed that during 2001~2017, the urban areas of mega cities all experienced an expanding process, and the high intensity urban heat island was mainly distributed in the densely populated core areas of the cities. Secondly, among the 10 megacities, the annual average SUHII of Karachi was strongest with the value of 3.02 ℃, and the SUHII of Chennai showed a significant upward trend (0.07 ℃/a, P<0.1). Finally, there were seasonal differences in the urban heat island among the mega cities. In summer, the average SUHII of Istanbul was strongest with the value of 2.88 ℃. In winter, the average SUHII of Karachi was the strongest with the value of 4.45 ℃.

Key words: MODIS    Land use classification    Coastal mega city    Land surface temperature    Urban heat island effect
收稿日期: 2019-08-22 出版日期: 2020-11-26
ZTFLH:  X87  
基金资助: 国家重点研发计划项目(2016YFB0500304);中国科学院先导专项项目(XDA19090107);国家自然科学基金项目(41471369);江西省教育厅科学技术研究项目(GJJ170524);互联网+地名众包项目(2016MZRL015-05)
通讯作者: 鹿琳琳     E-mail: 1378607406@qq.com;lull@radi.ac.cn
作者简介: 程雨婷(1994—),女,江西高安人,硕士研究生,主要从事城市环境变化遥感研究。E?mail: 1378607406@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
程雨婷
刘昭华
鹿琳琳
刘士彪
李庆亭

引用本文:

程雨婷,刘昭华,鹿琳琳,刘士彪,李庆亭. 一带一路沿海超大城市热岛时空特征遥感分析[J]. 遥感技术与应用, 2020, 35(5): 1197-1205.

Yuting Cheng,Zhaohua Liu,linlin Lu,Shibiao Liu,Qingting Li. Spatio-temporal Dynamics of Surface Urban Heat Island in Coastal Mega Cities along the Belt and Road from Remote Sensing Data. Remote Sensing Technology and Application, 2020, 35(5): 1197-1205.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2020.5.1197        http://www.rsta.ac.cn/CN/Y2020/V35/I5/1197

图1  研究区地理位置
图2  马尼拉市核心城区和乡村区域
热岛强度等级范围
0级热岛SUHII≦0℃
1级热岛0℃<SUHII≦1℃
2级热岛1℃<SUHII≦2℃
3级热岛2℃<SUHII≦3℃
4级热岛SUHII>3℃
表1  热岛强度等级划分
图3  超大城市2001~2017年平均热岛强度空间分布
时期广州金奈卡拉奇马尼拉孟买上海深圳天津雅加达伊斯坦布尔
2000~200516.155.450.323.930.3247.0511.688.972.273.98
2006~20104.571.360.281.710.0313.3912.8716.601.482.43
2011~20155.101.201.282.310.1010.1910.836.770.930.79
表2  2000-2015年超大城市核心城区扩张速度/%
图4  超大城市热岛强度年际变化
广州金奈卡拉奇马尼拉孟买上海深圳天津雅加达伊斯坦布尔
年均SUHII变化趋势(℃/a)0.000.07*-0.03-0.030.010.01-0.04-0.02-0.010.00
SUHII平均值(℃)2.141.333.021.421.590.731.812.31-0.041.82
表3  超大城市年均SUHII变化趋势
图5  超大城市季节平均热岛强度年际变化
夏季冬季
变化趋势/℃a-1平均值/℃变化趋势/℃a-1平均/℃
广州0.062.310.021.92
金奈0.25**0.440.07**1.98
卡拉奇-0.091.360.004.45
马尼拉-0.080.57-0.022.15
孟买0.051.440.02**1.99
上海0.000.890.05**0.50
深圳0.061.75-0.062.21
天津-0.021.800.002.19
雅加达0.03-0.13-0.020.12
伊斯坦布尔-0.04**2.880.040.48
表4  超大城市季节平均SUHII变化趋势
1 Angel S, Parent J, Civco D L, et al. The Dimensions of Global Urban Expansion: Estimates and Projections for All Countries, 2000–2050 [J]. Progress in Planning, 2011, 75(2):53–107. doi: 10.1016/j.progress.2011.04.001.
doi: 10.1016/j.progress.2011.04.001
2 UNEP (2014). Assessing Global Land Use: Balancing Consumption with Sustainable Supply[R]. A Report of the Working Group on Land and Soils the International Resource Panel,2014.
3 Sengupta D, Chen R S, Meadows M E. Building Beyond Land: An Overview of Coastal Land Reclamation in 16 Global Megacities. Applied Geography, 2018, 90(90):229-238. doi: 10.1016/j.apgeog.2017.12.015.
doi: 10.1016/j.apgeog.2017.12.015
4 Oke T R. City Size and Urban Heat Island [J]. Atmospheric Environment, 1973, 7(8):769-779.doi: 10.1016/0004-6981(73)90140-6.
doi: 10.1016/0004-6981(73)90140-6
5 Imhoff M L, Zhang P, Wolfe R E, et al. Remote Sensing of the Urban Heat Island Effect Across Biomes in the Continental USA [J]. Remote Sensing of Environment, 2010, 114(3):504-513. doi: 10.1016/j.rse.2009.10.008.
doi: 10.1016/j.rse.2009.10.008
6 Chen Liding, Sun Ranhao, Liu Hailian. Eco-environmental Effects of Urban Landscape Pattern Changes [J]. Acta Ecolorical Sinica, 2013, 33(4):1042-1050.
6 陈立顶,孙然好,刘海莲.城市景观格局演变的生态环境效应研究进展[J].生态学报,2013,33(4):1042-1050.
7 Huang Qunfang, Lu Yuqi. Long-term Trend of Urban Heat Island Intensity and Climatological Affecting Mechanism in Beijing City [J]. Scientia Geographica Sinica, 2018, 38(10):1715-1723.
7 黄群芳,陆玉麒.北京地区城市热岛强度长期变化特征及气候学影响机制[J].地理科学,2018,38(10):1715-1723.
8 Xu Wei, Yang Hanwei, Zhang Shipeng, et al. Variations of the Urban Heat Island Effect in Shanghai [J]. Journal of Tropical Meteorology, 2018, 34(2):228-238.
8 徐伟,杨涵洧,张仕鹏,等.上海城市热岛的变化特征[J].热带气象学报,2018,34(2):228-238.
9 Xu Hanqiu, Chen Benqing. An Image Processing Technique for the Study of Urban Heat Island Changes Using Different Seasonal Remote Sensing Data [J]. Remote Sensing Technology and Application, 2003, 18(3):129-133.
9 徐涵秋, 陈本清. 不同时相的遥感热红外图像在研究城市热岛变化中的处理方法[J].遥感技术与应用,2003,18(3):129-133.
10 Zhou Ji, Chen Yunhao, Li Jing, et al. A Volume Model for Urban Heat Island based on Remote Sensing Imagery and Its Application: A Case Study in Beijing [J]. Journal of Remote Sensing, 2008, 12(5):734-742.
10 周纪,陈云浩,李京,等.基于遥感影像的城市热岛容量模型及其应用——以北京地区为例[J].遥感学报,2008,12(5):734-742.
11 Wang Jiankai, Wang Kaicun, Wang Pucai, et al. Urban Heat (or Cold) Island over Beijing from MODIS Land Surface Temperature [J]. Journal of Remote Sensing, 2007, 11(3):330-339.
11 王建凯,王开存,王普才,等.基于MODIS地表温度产品的北京城市热岛(冷岛)强度分析[J].遥感学报,2007,11(3):330-339.
12 Ye Ke, Qin Zhihao. A Study of Urban Heat Island in Summer of Nanjing based on MODIS Data [J]. Remote Sensing Technology and Application, 2006, 21(5):426-431.
12 叶柯,覃志豪.基于MODIS数据的南京市夏季城市热岛分析[J].遥感技术与应用,2006,21(5):426-431.
13 Li Jun, Gong Wei, Xin Xiaozhou, et al. Land Surface Temperature Retrieval and Its Spatial Heterogeneity in Summer in Chongqing [J]. Remote Sensing Technology and Application, 2018, 33(5):820-829.
13 李军,龚围,辛晓洲,等.重庆地表温度的遥感反演及其空间分异特征[J].遥感技术与应用,2018,35(5):820-829.
14 Fan Zhiyu, Zhan Qingming, Liu Huimin, et al. Spatial-temporal Distribution of Urban Heat Island and the Heating Effect of Impervious Surface in Summer in Wuhan [J]. Journal of Geo-information Science, 2019, 21(2):226-235.
14 樊智宇,詹庆明,刘慧民,等.武汉市夏季城市热岛与不透水面增温强度时空分布[J].地球信息科学学报,2019,21(2):226-235.
15 Yang Zhiwei, Chen Yingbiao, Wu Zhifeng, et al. Spatial Pattern of Urban Heat Island and Multivariate Modeling of Impact Factors in the Guangdong-HongKong-Macao Greater Bay Area [J]. Resources Science, 2019, 41(6):1154-1166.
15 杨智威,陈颖彪,吴志峰,等.粤港澳大湾区城市热岛空间格局及影响因子多元建模[J].资源科学,2019,41(6):1154-1166.
16 Fang Yingbo, Zhan Wenfeng, Huang Fan, et al. Hourly Variation of Surface Urban Heat Island over the Yangtze River Delta Urban Agglomeration [J]. Advances in Earth Science, 2017, 32(2):187-198.
16 方迎波,占文凤,黄帆,等.长三角城市群表面城市热岛日内逐时变化规律[J].地球科学进展,2017,32(2):187-198.
17 Peng S S, Piao S L, Ciais P, et al. Surface Urban Heat Island Across 419 Global Big Cities [J]. Environmental Science & Technology, 2012, 46(2):696-703. doi: 10.1021/es2030438.
doi: 10.1021/es2030438
18 Zhou D C, Zhao S Q, Zhang L X, et al. The Footprint of Urban Heat Island Effect in China [J]. Scientific Reports. 2015, 5(5):11160. doi: 10.1038/srep11160.
doi: 10.1038/srep11160
19 Wang Meiya, Xu Hanqiu. Analyzing the Influence of Urban Forms on Surface Urban Heat Islands Intensity in Chinese Mega Cities [J]. Journal of Geo-information Science, 2018, 20(12):1787-1798.
19 王美雅,徐涵秋.中国大城市的城市组成对城市热岛强度的影响研究[J].地球信息科学学报,2018,20(12):1787-1798.
20 Guo H D. Steps to the Digital Silk Road[J]. Nature, 2018, 554(7690):25-27.
21 Feng Suyun, Zhang Kaixuan, Lu Linlin. Remote Sensing Analysis of Environmental Changes in Mega Cities along the Maritime Silk Road [J]. Journal of Geo-Information Science, 2018, 20(5):602-612.
21 冯素云,张凯选,鹿琳琳.“海上丝绸之路”超大城市环境变化遥感分析[J].地球信息科学学报,2018,20(5):602-612.
22 Lu L L, Weng Q H, Guo H D, et al. Assessment of Urban Environmental Change Using Multi-source Remote Sensing Time Series (2000–2016): A Comparative Analysis in Selected Megacities in Eurasia [J]. Science of the Total Environment, 2019, 684(684):567-577. doi: 10.1016/j.scitotenv.2019.05.344.
doi: 10.1016/j.scitotenv.2019.05.344
23 Wan Z M. New Refinements and Validation of the Collection-6 MODIS Land-surface Temperature/Emissivity Product[J]. Remote Sensing of Environment, 2014, 140(140):36-45. doi: 10.1016/j.rse.2013.08.027.
doi: 10.1016/j.rse.2013.08.027
24 Lin Zhongli, Xu Hanqiu. A Study of Urban Heat Island Intensity Based on “Local Climate Zones” [J]. Journal of Geo-information Science, 2017, 19(5):713-722.
24 林中立,徐涵秋.基于LCZ的城市热岛强度研究[J].地球信息科学学报,2017,19(5):713-722.
25 Zhou D, Zhao S, Liu S, et al. Surface Urban Heat Island in China's 32 Major Cities: Spatial Patterns and Drivers. Remote Sensing of Environment, 2014, 152(152):51-61. doi: 10.1016/j.rse.2014.05.017.
doi: 10.1016/j.rse.2014.05.017
26 Hicham B, Hassan R, Ahmed B, et al. Effects of Urbanization and Seasonal Cycle on the Surface Urban Heat Island Patterns in the Coastal Growing Cities: A Case Study of Casablanca, Morocco [J]. Remote Sensing, 2016, 8(10):829. doi: 10.3390/rs8100829.
doi: 10.3390/rs8100829
27 Estoque R C, Murayama Y J. Monitoring Surface Urban Heat Island Formation in A Tropical Mountain City Using Landsat Data (1987-2015) [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 113(133):18-29. doi:10.1016/j.isprsjprs.2017.09.008.
doi: 10.1016/j.isprsjprs.2017.09.008
28 Li Q T, Lu L L, Wang C Z, et al. MODIS-Derived Spatiotemporal Changes of Major Lake Surface Areas in Arid Xinjiang, China, 2000-2014 [J]. Water, 2015, 7(10):5731-5751. doi:/10.3390/w7105731.
doi: /10.3390/w7105731
29 Cheng Chen, Cai Zhe, Yan Wei, et al. Study of Temporal and Spatial Variation of Urban Heat Island based on Landsat TM in Central City and Binhai New Area of Tianjin [J]. Journal of Natural Resources, 2010, 25(10):1727-1737.
29 程晨,蔡喆,闫维,等.基于Landsat TM/ETM+的天津城区及滨海新区热岛效应时空变化研究[J].自然资源学报,2010,25(10):1727-1737.
30 Peng Baofa, Shi Yishao, Wang Hefeng, et al. The Impacting Mechanism and Laws of Function of Urban Heat Islands Effect: A case Study of Shanghai [J]. Acta Geographica Sinica, 2013, 68(11):1641-1471.
30 彭保发,石忆邵,王贺封,等.城市热岛效应的影响机理及其作用规律—以上海市为例[J].地理学报,2013,68(11):1641-1471.
31 Li Y Y, Zhang H, Kainz W G. Monitoring Patterns of Urban Heat Islands of the Fast-growing Shanghai Metropolis, China: Using time-series of Landsat TM/ETM+ Data [J]. International Journal of Applied Earth Observation and Geoinformation,2012,19(19):127-138. doi:10.1016/j.jag.2012. 05.001.
doi: 10.1016/j.jag.2012. 05.001
32 Lin Zhongli, Xu Hanqiu. Comparative Study on the Urban Heat Island Effect in “Stove Cities” during the Last 20 Years [J]. Remote Sensing Technology and Application, 2019, 34(3):521-530.
林中立,徐涵秋. 近20年来新旧“火炉城市”热岛状况对比研究[J].遥感技术与应用,2019, 34(3) :521-530.
]`
33 Shi Shushu, Kuang Wenhui, Dong Siqi. Spatiotemporal Pattern of Urban-rural Aradient Land Cover Changes and Their Impact on Urban Heat Island in Xi′an City Since the 21st Century [J]. Remote Sensing Technology and Application, 2020, 35(3):537-547.
33 史姝姝,匡文慧,董斯齐. 21世纪以来西安城乡梯度土地覆盖变化及对城市热岛影响时空特征[J].遥感技术与应用,2020,35(3):537-547.
[1] 韦海宁,王维真,黄广辉,徐菲楠,冯姣姣,董磊磊. 基于Himawari-8的气溶胶反演研究[J]. 遥感技术与应用, 2020, 35(4): 797-807.
[2] 魏石梅, 潘竟虎, 妥文亮. 2015年中国PM2.5浓度遥感估算与时空分布特征[J]. 遥感技术与应用, 2020, 35(4): 845-854.
[3] 李超,李雪梅,田亚林,任瑞. 温度植被干旱指数时空融合模型对比[J]. 遥感技术与应用, 2020, 35(4): 832-844.
[4] 史姝姝,匡文慧,董斯齐. 21世纪以来西安城乡梯度土地覆盖变化及对城市热岛影响时空特征[J]. 遥感技术与应用, 2020, 35(3): 537-547.
[5] 董超,赵庚星. 时序数据集构建质量对土地覆盖分类精度的影响研究[J]. 遥感技术与应用, 2020, 35(3): 558-566.
[6] 龙爽,郭正飞,徐粒,周华真,方伟华,许映军. 基于Google Earth Engine的中国植被覆盖度时空变化特征分析[J]. 遥感技术与应用, 2020, 35(2): 326-334.
[7] 张新平,乔治,李皓,闫杰,张芳芳,赵栋锋,王得祥,康海斌,杨航,冯扬. 基于Landsat影像和不规则梯形方法遥感反演延安城市森林表层土壤水分[J]. 遥感技术与应用, 2020, 35(1): 120-131.
[8] 郑贵洲,熊良超,廖艳雯,王红平. 利用MODIS数据反演南海南部海表温度及时空变化分析[J]. 遥感技术与应用, 2020, 35(1): 132-140.
[9] 赵春亮,许文波,范锦龙. FY-3C中分辨率成像光谱仪数据的窄波段地表反照率验证研究[J]. 遥感技术与应用, 2020, 35(1): 153-162.
[10] 王一帆,徐涵秋. 利用MODIS EVI时间序列数据分析福建省植被变化(2000~2017年)[J]. 遥感技术与应用, 2020, 35(1): 245-254.
[11] 徐卫星,薛华柱,靳华安,李爱农. 融合遥感先验信息的叶面积指数反演[J]. 遥感技术与应用, 2019, 34(6): 1235-1244.
[12] 冯艾琳,武晋雯,孟莹,姜鹏,董巍,张璇,方缘,刘斌. 基于MODIS GPP数据产品的辽宁省碳源/汇空间格局分布研究[J]. 遥感技术与应用, 2019, 34(4): 857-864.
[13] 冯婵莹, 汪子豪, 郑成洋. 基于分层线性回归的MODIS反照率产品降尺度方法研究[J]. 遥感技术与应用, 2019, 34(3): 602-611.
[14] 田慧慧, 冯 莉, 赵璊璊, 郭 松, 董继伟. 无人机热红外城市地表温度精细特征研究 [J]. 遥感技术与应用, 2019, 34(3): 553-563.
[15] 林中立, 徐涵秋. 近20年来新旧“火炉城市”热岛状况对比研究[J]. 遥感技术与应用, 2019, 34(3): 521-530.