Please wait a minute...
img

官方微信

遥感技术与应用  2020, Vol. 35 Issue (6): 1237-1262    DOI: 10.11873/j.issn.1004-0323.2020.6.1237
冰雪遥感专栏     
积雪、土壤冻融与土壤水分遥感监测研究进展
蒋玲梅1(),崔慧珍1,2,王功雪1,3,杨建卫1,王健1,潘方博1,苏旭1,方西瑶1
1.北京师范大学/中国科学院空天信息创新研究院联合遥感科学国家重点实验室,北京师范大学地理科学学部,北京 100875
2.北京师范大学生命科学学院,北京 100875
3.信息工程大学,河南 郑州 450001
Progress on Remote Sensing of Snow, Surface Soil Frozen/Thaw State and Soil Moisture
Lingmei Jiang1(),Huizhen Cui1,2,Gongxue Wang1,3,Jianwei Yang1,Jian Wang1,Fangbo Pan1,Xu Su1,Xiyao Fang1
1.State Key Laboratory of Remote Sensing Science,Jointly Sponsored by Beijing Normal University and Aerospace Information Research Institute of Chinese Academy of Sciences,Faculty of Geographical Science,Beijing Normal University,Beijing 100875,China
2.College of Life Sciences,Beijing Normal University,Beijing 100875,China
3.Information Engineering University,Zhengzhou 450001,China
 全文: PDF(2576 KB)   HTML
摘要:

积雪、土壤冻融与土壤水分是陆表能量与水分以及碳交换过程研究中的重要因子,为了更好地了解积雪覆盖、雪深/雪水当量、土壤冻融状态和土壤水分等参数的遥感监测领域的发展动态,对这些参数遥感监测方法的研究进展进行了梳理,总结了利用光学与微波遥感,以及多源遥感融合的监测方法,并对该研究领域的发展趋势进行了展望。积雪、土壤冻融与土壤水分的遥感监测能力不断提升,监测算法从单一传感器向多传感器、单波段单一模式向多波段多模式集成,以及卫星虚拟星座综合观测概念的提出,均促进了现有卫星观测地表参数能力的提升;长时间序列产品的开发,对于研究和掌握全球变化大背景下对气候的响应提供了很好的数据基础;同时有助于促进遥感在水文、气象、气候、生态等领域的应用。以上的研究综述,有望对陆表水循环遥感参数反演领域,以及水循环遥感关键参数的应用领域有一定的借鉴作用。

关键词: 遥感监测积雪覆盖雪深/雪水当量土壤冻融土壤水分    
Abstract:

Snow cover, snow depth/snow water equivalent, surface soil frozen/thaw state and soil moisture are the key variables in the three cycles including energy, water and carbon cycles. In order to better understand the remote sensing techniques of above parameters, this paper presents a comprehensive review of the progress in remote sensing of snow, soil frozen/thaw state and soil moisture, including the methods and theories of snow cover, snow depth / snow water equivalent, surface soil frozen/thaw and soil moisture remote sensing monitoring from visible, microwave techniques and the integration of multi-sources of remote sensing. The research progress of these parameters is summarized, and the prospects of these parameters are also discussed. The capability of snow, surface soil frozen/thaw state and soil moisture with remote sensing has been demonstrated to be improved greatly due to the retrieval algorithms development based on from single-sensor to multi-sensor combination, single-band to multi-band integration, especially on the virtual satellites constellation. Long time series data set of these surface parameters about 40~50 years were generated, then these products provide our better understanding on surface response to global climate change, and accelerating the application into the research of hydrology, climate and carbon cycles. This review will be helpful for the application of key parameters retrieval in water cycle with remote sensing.

Key words: Remote sensing    Snow cover    Snow depth/snow water equivalent    Surface soil frozen/thaw state    Soil moisture
收稿日期: 2020-04-27 出版日期: 2021-01-26
ZTFLH:  TP79  
基金资助: 青藏高原二次科考项目专题6“亚洲水塔区水量平衡的动态观测与模拟”(2019QZKK0206);国家自然科学基金重大项目课题“陆地水循环关键参量时空多尺度智慧化遥感”(42090014);国家自然科学基金项目“基于多源遥感数据的中国地区时空连续积雪覆盖度反演算法研究”(41671334);国家科技基础资源调查专项“中国积雪特性及分布调查”第二课题“中国积雪时空分布特性遥感调查”(2017FY100502)
作者简介: 蒋玲梅(1978-),女,浙江东阳人,博士,教授,主要从事积雪、地表冻融与土壤水分遥感研究。E?mail: jiang@bnu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
蒋玲梅
崔慧珍
王功雪
杨建卫
王健
潘方博
苏旭
方西瑶

引用本文:

蒋玲梅,崔慧珍,王功雪,杨建卫,王健,潘方博,苏旭,方西瑶. 积雪、土壤冻融与土壤水分遥感监测研究进展[J]. 遥感技术与应用, 2020, 35(6): 1237-1262.

Lingmei Jiang,Huizhen Cui,Gongxue Wang,Jianwei Yang,Jian Wang,Fangbo Pan,Xu Su,Xiyao Fang. Progress on Remote Sensing of Snow, Surface Soil Frozen/Thaw State and Soil Moisture. Remote Sensing Technology and Application, 2020, 35(6): 1237-1262.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2020.6.1237        http://www.rsta.ac.cn/CN/Y2020/V35/I6/1237

图1  全球水循环过程示意图[5]
1 Zhang T, Barry R G, Armstrong R L. Application of Satellite Remote Sensing Techniques to Frozen Ground Studies[J]. Polar Geography, 2004, 28(3): 163-196.
2 Brooks P D, Grogan P, Templer P H, et al. Carbon and Nitrogen Cycling in Snow-Covered Environments[J]. Geography Compass, 2011, 5(9): 682-699.
3 Edwards A C, Scalenghe R, Freppaz M. Changes in the Seasonal Snow Cover of Alpine Regions and Its Effect on Soil Processes: A Review[J]. Quaternary International, 2007, 162-163: 172-181.
4 Mei Anxin, Peng Wanglu, Qin Qiming, et al. Introduction to Remote Sensing[M].Beijing:Higher Education Press,2001.梅安新, 彭望碌, 秦其明, 等. 遥感导论[M]. 北京: 高等教育出版社, 2001.
5 Shi J C,Dong X,Zhao T,et al. “WCOM: The Science Scenario and Objectives of a Global Water Cycle Observation Mission,”[C]∥ Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE Geoscience and Remote Sensing,2014:3646-3649.
6 Dozier J. Spectral Signature of Alpine Snow Cover from the Landsat Thematic Mapper[J]. Remote Sensing of Environment, 1989, 28:9-22.
7 Hall D K, Riggs G A, Salomonson V V. Development of Methods for Mapping Global Snow Cover Using Moderate Resolution Imaging Spectroradiometer Data[J]. Remote Sensing of Environment, 1995, 54(2): 127-140.
8 Klein A G, Hall D K, Riggs G A. Improving Snow Cover Mapping in Forests through the Use of a Canopy Reflectance Model[J]. Hydrological Processes, 1998, 12(10): 1723-1744.
9 Riggs G A, Hall D K, RomÁN M O. MODIS Snow Products Collection 6 User Guide[EB/OL]. 2016, .
10 Salomonson V V, Appel I. Estimating Fractional Snow Cover from MODIS Using the Normalized Difference Snow Index[J]. Remote Sensing of Environment, 2004, 89(3): 351-360.
11 Salomonson V V, Appel I. Development of the Aqua MODIS NDSI Fractional Snow Cover Algorithm and Validation Results[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(7): 1747-1756.
12 Wang G X, Jiang L M, Shi J C, et al. Snow-covered Area Retrieval from Himawari–8 AHI Imagery of the Tibetan Plateau[J]. Remote Sensing, 2019, 11(20): 1-23.
13 Wang G X, Jiang L M, Shi J C, et al. A Universal Ratio Snow Index for Fractional Snow Cover Estimation[J]. IEEE Geoscience And Remote Sensing Letters, 2020: 1-5. doi:10.1109/LGRS.2020.2982053,1-5.
doi: 10.1109/LGRS.2020.2982053
14 Slater M T, Sloggett D R, Rees W G, et al. Potential Operational Multi-Satellite Sensor Mapping of Snow Cover in Maritime Sub-Polar Regions[J]. International Journal of Remote Sensing, 1999, 20(15-16): 3019-3030.
15 Metsämäki S, Anttila S T, Markus H J, et al. A Feasible Method for Fractional Snow Cover Mapping in Boreal Zone based on A Reflectance Model[J]. Remote Sensing of Environment, 2005, 95(1): 77-95.
16 Metsämäki S, Pulliainen J, Salminen M, et al. Introduction to Globsnow Snow Extent Products with Considerations for Accuracy Assessment[J]. Remote Sensing of Environment, 2015, 156:96-108.
17 Hori M, Sugiura K, Kobayashi K, et al. A 38-Year (1978–2015) Northern Hemisphere Daily Snow Cover Extent Product derived Using Consistent Objective Criteria from Satellite-Borne Optical Sensors[J]. Remote Sensing of Environment, 2017, 191:402-418.
18 Painter T H, Rittger K, Mckenzie C, et al. Retrieval of Subpixel Snow Covered Area, Grain Size,and Albedo from MODIS[J]. Remote Sensing of Environment, 2009, 113(4): 868-879.
19 Rittger K, Painter T H, Dozier J. Assessment of Methods for Mapping Snow Cover from MODIS[J]. Advances in Water Resources, 2013, 51:367-380.
20 Sirguey P, Matieu R, Arnaud Y. Subpixel Monitoring of the Seasonal Snow Cover with MODIS at 250 m Spatial Resolution in the Southern Alps of New Zealand: Methodology and Accuracy Assessment[J]. Remote Sensing of Environment, 2009, 113(1): 160-181.
21 Shi Jiancheng. An Automatic Algorithm on Estimating Sub-Pixel Snow Cover from MODIS[J].Quaternary Sciences,2012,32(1):6-15.
21 施建成. MODIS 亚像元积雪覆盖反演算法研究—纪念杰出的地理学家, 冰川学家施雅风先生逝世一周年[J]. 第四纪研究, 2012, 32(1): 6-15.
22 Zhu J, Shi J C, Wang Y. Subpixel Snow Mapping of the Qinghai–Tibet Plateau Using MODIS Data[J]. International Journal of Applied Earth Observation and Geoinformation, 2012, 18:251-262.
23 Hao S R, Jiang L M, Shi J C, et al. Assessment of MODIS-Based Fractional Snow Cover Products over the Tibetan Plateau[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 12(2): 533-548.
24 Zhao Hongyu, Hao Xiaohua, Zheng Zhaojun, et al. A New Algorithm of Fractional Snow Cover Basing on FY-3D/MERSI-II[J]. Remote Sensing Technology and Application ,2018,33(6):24-36.
24 赵宏宇, 郝晓华, 郑照军,等. 基于FY-3D/MERSI-II的积雪面积比例提取算法[J]. 遥感技术与应用, 2018, 33(6): 24-36.
25 Xiao Pengfeng, Feng Xuezhi, Xie Shunping,et al. Research Progresses of High-resolution Remote Sensing of Snow in Manasi River Basin in Tianshan Mountains,Xinjiang Province[J].Journal of Nanjing University(Natural Sciences Edition),2015,51(5):909-920.
25 肖鹏峰, 冯学智, 谢顺平, 等. 新疆天山玛纳斯河流域高分辨率积雪遥感研究进展[J]. 南京大学学报(自然科学版), 2015,51(5): 909-920.
26 Gascoin S, Grizonnet M, Bouchet M, et al. Theia Snow Collection: High-resolution Operational Snow Cover Maps from Sentinel-2 and Landsat-8 Data[J]. Earth System Science Data, 2019, 11(2): 493-514.
27 CortÉS G, Girotto M, Margulis S A. Analysis of Sub-pixel Snow and Ice Extent over the Extratropical Andes Using Spectral Unmixing of Historical Landsat Imagery[J]. Remote Sensing of Environment, 2014, 141:64-78.
28 Aalstad K, Westermann S, Bertino L. Evaluating Satellite Retrieved Fractional Snow-covered Area at A High-Arctic Site Using Terrestrial Photography[J]. Remote Sensing of Environment, 2020, 239:1-19.
29 Dobreva I D, Klein A G. Fractional Snow Cover Mapping Through Artificial Neural Network Analysis of MODIS Surface Reflectance[J]. Remote Sensing of Environment, 2011, 115(12): 3355-3366.
30 Czyzowska-Wisniewski E H, Vanleeuwen W J D, Hirschboeck K K, et al. Fractional Snow Cover Estimation in Complex Alpine-forested Environments Using an Artificial Neural Network[J]. Remote Sensing of Environment, 2015, 156:403-417.
31 Kuter S, Akyurek Z, Weber G W. Retrieval of Fractional Snow Covered Area from MODIS Data by Multivariate Adaptive Regression Splines[J]. Remote Sensing of Environment, 2018, 205:236-252.
32 Moosavi V, Malekinezhad H, Shirmohmmadi B. Fractional Snow Cover Mapping from MODIS Data Using Wavelet-Artificial Intelligence Hybrid Models[J]. Journal of Hydrology, 2014, 511:160-170.
33 Romanov P, Gutman G, Csiszar I. Automated Monitoring of Snow Cover over North America with Multispectral Satellite Data[J]. Journal of Applied Meteorology, 2000, 39(11): 1866-1880.
34 De Ruyter De Wildt M, Seiz G, Gruen A. Operational Snow Mapping Using Multitemporal Meteosat SEVIRI Imagery[J]. Remote Sensing of Environment, 2007, 109(1): 29-41.
35 Siljamo N, Hyvärinen O. New Geostationary Satellite-based Snow Cover Algorithm[J]. Journal of Applied Meteorology and Climatology, 2011, 50(6): 1275-1290.
36 Yang J T, Jiang L M , Shi J C, et al. Monitoring Snow Cover Using Chinese Meteorological Satellite Data over China[J]. Remote Sensing of Environment, 2014, 143:192-203.
37 Romanov P, Tarpley D, Gutman G, et al. Mapping And Monitoring of the Snow Cover Fraction over North America[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D16): 1-15.
38 Romanov P, Tarpley D. Enhanced Algorithm for Estimating Snow Depth from Geostationary Satellites[J]. Remote Sensing of Environment, 2007, 108(1): 97-110.
39 Wang G X, Jiang L M, Wu S L, et al. Fractional Snow Cover Mapping from FY-2 VISSR Imagery of China[J]. Remote Sensing, 2017, 9(10): 1-20.
40 Ramsay B H. The Interactive Multisensor Snow and Ice Mapping System[J]. Hydrological Processes, 1998, 12(10): 1537-1546.
41 Chen X Y, Jiang L M. Evaluation of the IMS Snow Map in Southern China based on High Spatial Resolution Imagery[C]∥ IEEE International Geoscience and Remote Sensing Symposium, 2014: 3994-3997.
42 Liang T, Zhang X, Xie H, et al. Toward Improved Daily Snow Cover Mapping with Advanced Combination of MODIS and AMSR-E Measurements[J]. Remote Sensing of Environment, 2008, 112(10): 3750-3761.
43 Gao Y, Xie H, Yao T, et al. Integrated Assessment on Multi-temporal and Multi-sensor Combinations for Reducing Cloud Obscuration of MODIS Snow Cover Products of The Pacific Northwest USA[J]. Remote Sensing of Environment, 2010, 114(8): 1662-1675.
44 Chen X N, Long D, Liang S L, et al. Developing A Composite Daily Snow Cover Extent Record over The Tibetan Plateau from 1981 to 2016 Using Multisource Data[J]. Remote Sensing of Environment, 2018, 215:284-299.
45 Parajka J, Pepe M, Rampini A, et al. A Regional Snow-Line Method for Estimating Snow Cover from MODIS during Cloud Cover[J]. Journal of Hydrology, 2010, 381(3-4): 203-212.
46 Zhang Huan,Qiu Yubao, Zheng Zhaojun,et al. Comparative Study of the Feasibility of Cloud Removal Methods based on MODIS Seasonal Snow Cover Data over the Tibetan Plateau[J]. Journal of Glaciology and Geocryology,2016,38(3):714-724.
46 张欢, 邱玉宝, 郑照军, 等. 基于MODIS的青藏高原季节性积雪去云方法可行性比较研究[J]. 冰川冻土, 2016, 38(3): 714-724.
47 Hall D K, Riggs G A, Foster J L, et al. Development and Evaluation of a Cloud-Gap-Filled MODIS Daily Snow Cover Product[J]. Remote Sensing Of Environment, 2010, 114(3): 496-503.
48 Morriss B F, Ochs E, Deeb E J, et al. Persistence-based Temporal Filtering for MODIS Snow Products[J]. Remote Sensing of Environment, 2016, 175:130-137.
49 Parajka J, Blöschl G. Spatio-Temporal Combination of MODIS Images - Potential for Snow Cover Mapping[J]. Water Resources Research, 2008, 44(3): 72-84.
50 Gafurov A, BÁRdossy A. Cloud Removal Methodology from MODIS Snow Cover Product[J]. Hydrology and Earth System Sciences, 2009, 13(7): 1361-1373.
51 Wang W, Huang X, Deng J, et al. Spatio-Temporal Change of Snow Cover and Its Response to Climate over The Tibetan Plateau based on an Improved Daily Cloud-Free Snow Cover Product[J]. Remote Sensing, 2014, 7(1): 169-194.
52 Qiu Yubao, Zhang Huan,Chu Duo,et al.Cloud Removing Algorithm for The Daily Cloud Free MODIS-based Snow Cover Product Over The Tibetan Plateau[J].Journal of Glaciology and Geocryology,2017,39(3):515-526.
52 邱玉宝, 张欢, 除多, 等. 基于MODIS的青藏高原逐日无云积雪产品算法[J]. 冰川冻土, 2017, 39(3): 515-526.
53 Dozier J, Painter T H, Rittger K, et al. Time–Space Continuity of Daily Maps of Fractional Snow Cover and Albedo from MODIS[J]. Advances in Water Resources, 2008, 31(11): 1515-1526.
54 Li X, Fu W, Shen H, et al. Monitoring Snow Cover Variability (2000-2014) in The Hengduan Mountains based on Cloud-removed MODIS Products with An Adaptive Spatio-Temporal Weighted Method[J]. Journal of Hydrology, 2017, 551:314-327.
55 Huang Y, Liu H, Yu B, et al. Improving MODIS Snow Products with A HMRF-based Spatio-Temporal Modeling Technique in the Upper Rio Grande Basin[J]. Remote Sensing of Environment, 2018, 204:568-582.
56 Shi Jiancheng, Xiong Chuan, Jiang Lingmei. Review of Snow Water Equivalent Microwave Remote Sensing[J].Scientia Sinica (Terrae),2016,46(4):529-543.
56 施建成 ,熊川, 蒋玲梅. 雪水当量主被动微波遥感研究进展[J]. 中国科学:D 辑, 2016, 46(4): 529-543.
57 Wiesmann A M C. Microwave Emission Model of Layered Snowpacks[J]. Remote Sensing of Environment, 1999, 70(3): 307-316.
58 Pulliainen J, Grandell J, Hallikainen M. HUT Snow Emission Model and Its Applicability to Snow Water Equivalent Retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(31): 13-17.
59 Tsang L, Chen C T, Chang A T, et al. Dense Media Radiative Transfer Theory based on Quasicrystalline Approximation with Applications to Passive Microwave Remote Sensing of Snow[J]. Radio Science, 2000, 35(3): 731-749.
60 Jiang L M, Shi J C, Tjuatja S. A Parameterized Multiple-scattering Model for Microwave Emission from Dry Snow[J]. Remote Sensing of Environment, 2007, 111(2-3):357-366.
61 Du J, Shi J, Rott H. Comparison between A Multi-scattering and Multi-layer Snow Scattering Model and Its Parameterized Snow Backscattering Model[J]. Remote Sensing of Environment, 2010, 114(5): 1089-1098.
62 Ding K H, Xu X, Tsang L. Electromagnetic Scattering by Bicontinuous Random Microstructures with Discrete Permittivities[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(8): 3139-3151.
63 Pan J M, Durand M T, Sandells M, et al. Differences between the HUT Snow Emission Model and MEMLS and Their Effects on Brightness Temperature Simulation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54:2001-2019.
64 Mätzler C, Wiesmann A. Extension of the Microwave Emissionmodel of Layered Snowpacks to Coarse-Grained Snow[J]. Remote Sensing of Environment, 1999, 70(3): 317–325.
65 Löwe H, Picard G. Microwave Scattering Coefficient of Snowin MEMLS and DMRTML Revisited: The Relevance of Sticky Hard Spheres and Tomography-based Estimates of Stickiness[J]. Cryosphere, 2015, 9(6): 2101–2117.
66 Royer A, Roy A, Montpetit B ,et al. Comparison of Commonly-Used Microwave Radiative Transfer Models for Snow Remote Sensing[J]. Remote Sensing of Environment, 2017, 190:247-259.
67 Zhu J, Tan S, King J, et al. Forward and Inverse Radar Modelingof Terrestrial Snow Using Snowsar Data[J]. IEEE Transactions on Geoence and Remote Sensing, 2018, 56(12): 7122-7132.
68 Foster J L, Chang A T C, Hall D K. Comparison of Snow Mass Estimates from a Prototype Passive Microwave Snow Algorithm, a Revised Algorithm and a Snow Depth Climatology[J]. Remote Sensing of Environment, 1997, 62(2):132-142.
69 Foster J L, Sun C, Walker J P, et al. Quantifying the Uncertainty in Passive Microwave Snow Water Equivalent Observations[J]. Remote Sensing of Environment, 2005, 94(2):187-203.
70 Kelly R, Chang A, Leung T, et al. A Prototype AMSR-E Global Snow Area and Snow Depth Algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(2):230-242.
71 Kelly R. The AMSR-E Snow Depth Algorithm: Description and Initial Results[J]. Journal of The Remote Sensing Society of Japan, 2009, 29(1):307-317.
72 Derksen C, Walker A E, Goodison B E,et al. Integrating in Situ and Multiscale Passive Microwave Data for Estimation of Subgrid Scale Snow Water Equivalent Distribution and Variability[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(5): 1-13.
73 Che T, Li X., Jin R.,et al. Snow Depth Derived from Passive Microwave Remote-Sensing Data in China[J]. Annals of Glaciology, 2008, 49(1):145-154.
74 Jiang L M, Wang P, Zhang L X, et al. Improvement of Snow Depth Retrieval for FY3B-MWRI in China[J]. China Earth Science, 2014, 57(6):1278-1292.
75 Yang J W, Jiang L M, Wu S L, et al. Development of a Snow Depth Estimation Algorithm over China for the FY-3D/MWRI[J]. Remote Sensing, 2019, 11(8):1-21.
76 Chang A T C, Foster J L, Hall D K. Nimbus-7 SMMR derived Global Snow Cover Parameters[J]. Annals of Glaciology, 1987, 9:39-44.
77 Fierz C, Armstrong R L, Durand Y, et al. The International Classification for Seasonal Snow on the Ground[M].Paris, the International Hydrological Programme of the United Nations Educational, Scientific and Cultural Organization (UNESCO- IHP), 2009.
78 Durand M, Kim E J, Margulis S A. Quantifying Uncertainty in Modeling Snow Microwave Radiance for a Mountain Snowpack at the Point-Scale, Including Stratigraphic Effects[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(6): 1753-1767.
79 Sturm M, Brian T, Glen L,et al. Estimating Snow Water Equivalent Using Snow Depth Data and Climate Classes[J]. Journal of Hydrometeorology, 2010, 11(6): 1380-1394.
80 Sturm M, Holmgren J, Liston G E. A Seasonal Snow Cover Classification System for Local to Global Applications[J]. Journal of Climate, 1995, 8(5):1261-1283.
81 Jiang L M, Shi J C, Tjuatja S. Estimation of Snow Water Equivalence Using the Polarimetric Scanning Radiometer from the Cold Land Processes Experiments (CLPX03)[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(2): 359-363.
82 Dai L, Che T, Wang J,et al. Snow Depth and Snow Water Equivalent Estimation from AMSR-E Data based on A Priori Snow Characteristics in Xinjiang, China[J]. Remote Sensing of Environment, 2012, 127:14-29.
83 Che T, Dai L, Zheng X.,et al. Estimation of Snow Depth from Passive Microwave Brightness Temperature Data in Forest Regions of Northeast China[J]. Remote Sensing of Environment, 2016, 183:334-349.
84 Kelly R, Li Q H,Saberi N. The AMSR2 Satellite-based Microwave Snow Algorithm (SMA): A New Algorithm for Estimating Global Snow Accumulation[C]∥ IEEE International Geoscience and Remote Sensing Symposium, 2019: 5606-5609.
85 Pulliainen J. Mapping of Snow Water Equivalent and Snow Depth in Boreal and Sub-Arctic Zones by Assimilating Space-borne Microwave Radiometer Data and Ground-based Observations[J]. Remote Sensing of Environment, 2006, 101(2):257-269.
86 Che T, Li X, Jin R,et al. Assimilating Passive Microwave Remote Sensing Data into a Land Surface Model to Improve the Estimation of Snow Depth[J]. Remote Sensing of Environment, 2014, 143: 54-63.
87 Takala M, Luojus K, Pulliainen J,et al. Estimating Northern Hemisphere Snow Water Equivalent for Climate Research Through Assimilation of Space-borne Radiometer Data and Ground-based Measurements[J]. Remote Sensing of Environment, 2011, 115(12):3517-3529.
88 Kontu A, Lemmetyinen J, Vehviläinen J, et al. Coupling SNOWPACK Modeled Grain Size Parameters with The HUT Snow Emission Model[J]. Remote Sensing of Environment, 2017, 194:33-47.
89 Kim R S, Durand M, Li D,et al. Estimating Alpine Snow Depth by Combining Multifrequency Passive Radiance Observations with Ensemble Snowpack Modeling[J]. Remote Sensing of Environment, 2019, 226:1-15.
90 Forman B A, Reichle R H. Using A Support Vector Machine and a Land Surface Model to Estimate Large-Scale Passive Microwave Brightness Temperatures over Snow Covered Land in North America[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(9): 4431-4441.
91 Pan J M, Durand M T, Vander Jagt B J,et al. Application of a Markov Chain Monte Carlo Algorithm for Snow Water Equivalent Retrieval from Passive Microwave Measurements[J]. Remote Sensing of Environment, 2017, 192:150-165.
92 Xiao X, Zhang T, And Zhong X. Support Vector Regression Snow-depth Retrieval Algorithm Using Passive Microwave Remote Sensing Data[J]. Remote Sensing of Environment, 2018, 210(7): 48-64.
93 Bair E H, Andre A C, Karl R. Using Machine Learning for Real-time Estimates of Snow Water Equivalent in the Watersheds of Afghanistan[J]. The Cryosphere, 2018, 12(5): 1579-1594.
94 Yang J, Jiang L, Luojus K,et al. Snow Depth Estimation and Historical Data Reconstruction over China based on a Random Forest Machine Learning Approach[J]. The Cryosphere, 2020, 14:1763-1778.
95 Tedsco M, Jeyaratnam J. A New Operational Snow Retrieval Algorithm Applied to Historical AMSR-E Brightness Temperatures[J]. Remote Sensing, 2016, 8(12): 1-25.
96 Kwon Y, Yang Z, Zhao L,et al. Estimating Snow Water Storage in North America Using CLM4, DART, and Snow Radiance Data Assimilation[J]. Journal of Hydrometeorology, 2016, 17(11):2853-2874.
97 Kwon Y, Yang Z, Zhao L. Improving The Radiance Assimilation Performance in Estimating Snow Water Storage Across Snow and Land-cover Types in North America[J]. Journal of Hydrometeorology, 2017, 18(3):651-668.
98 Larue F, Royer A, De SÈVe D,et al. Assimilation of Passive Microwave AMSR-2 Satellite Observations in a Snowpack Evolution Model over Northeastern Canada[J]. Hydrology and Earth System Science, 2018, 22:5711-5734.
99 Shi J C, Dong X L, Zhao T J,et al. WCOM: The Science Scenario and Objectives of a Global Water Cycle Observation Mission[C]∥ IEEE International Geoscience and Remote Sensing Symposium, 2014:3646-3649.
100 Cui Y, Xiong C, Lemmetyinen J,et al. Estimating Snow Water Equivalent with Backscattering at X and Ku Band based on Absorption Loss[J]. Remote Sensing, 2016, 8(6): 1-18.
101 Lievens H, Demuzere H, Marshall H P, et al. Snow Depth Variability in the Northern Hemisphere Mountains Observed from Space[J]. Nature Communications, 2019, 10:1-12.
102 Guneriussen T, Hogda K, Johnsen H, et al. Insar for Estimation of Changes in Snow Water Equivalent of Dry Snow[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(10): 2101-2108.
103 Deeb E , Marshall H P, Forster R. R,et al. Supporting NASA Snowex Remote Sensing Strategies and Requirements for L-band Interferometric Snow Depth and Snow Water Equivalent Estimation[C]∥ IEEE International Geoscience and Remote Sensing Symposium ,2017:1395-1396.
104 Leinss S, Wiesmann A, Lemmetyinen J, et al. Snow Water Equivalent of Dry Snow Measured by Differential Interferometry[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(8): 3773-3790.
105 Moller D, Readis K M, Bormann K J, et al. Mapping Snow Depth from Ka-band Interferometry: Proof of Concept and Comparison with Scanning Lidar Retrievals.[J]. IEEE Geoscience Remote Sensing Letters, 2017, 14(6):886-890.
106 Thomas H P, Daniel F B, Joseph W B, et al. The Airborne Snow Observatory: Fusion of Scanning LiDAR, Imaging Spectrometer, and Physically-based Modeling for Mapping Snow Water Equivalent and Snow Albedo[J]. Remote Sensing of Environment, 2016, 184:139-152.
107 Goetz J, Brenning A. Quantifying Uncertainties in Snow Depth Mapping from Structure from Motion Photogrammetry in An Alpine Area[J]. Water Resources Research, 2019, 55(9):7772-7783.
108 Adams M S, BÜHler Y, Fromm R. Multitemporal Accuracy and Precision Assessment of Unmanned Aerial System Photogrammetry for Slope‐Scale Snow Depth Maps in Alpine Terrain[J]. Pure and Applied Geophysics, 2018, 175(9): 3303-3324.
109 Avazi F, Bianchi A, Cina A, et al. Centimetric Accuracy in Snow Depth Using Unmanned Aerial System Photogrammetry and A Multistation[J]. Remote Sensing, 2018, 10(5):1-16.
110 Yu K, Li Y, Chang X. Snow Depth Estimation based on Combination of Pseudorange and Carrier Phase of GNSS Dual-Frequency Signals[J]. IEEE Transactions on Geoscience and Remote Sensing , 2018, 57(3): 1817-1828.
111 Huang Liangke, Zhou Wei, Liu Lilong, et al.Research on Surface Snow Depth Retrieval of New L5 Signals from GPS[J].Bulletin of Surveying and Mapping,2019(7):1-5.黄良珂, 周威, 刘立龙, 等. 基于GPS新型L5信号的地表雪深反演研究[J]. 测绘通报, 2019(7):1-5.
112 Wang Lifu, Zhang Shuang, Zhang Chenglong, et al. The Study of Ground-based GPS Retrieved Snow Depth in Altay[J]. Desert and Oasis Meteorology ,2019,13(1):93-98.
112 王力福, 张双, 张成龙, 等. 地基GPS用于阿勒泰积雪深度反演研究[J]. 沙漠与绿洲气象, 2019, 13(1): 93-98.
113 Martinec J, Rango A. Areal Distribution of Snow Water Equivalent Evaluated by Snow Cover Monitoring[J]. Water Resources Research, 1981,17(5):1480-1488.
114 Cline D W, Bales R C, Dozier J. Estimating the Spatial Distribution of Snow in Mountain Basins Using Remote Sensing and Energy Balance Modeling[J]. Water Resources Research, 1998,34(5): 1275–1285.
115 Molotch N P. Reconstructing Snow Water Equivalent in the Rio Grande Headwaters Using Remotely Sensed Snow Cover Data and a Spatially Distributed Snowmelt Model[J]. Hydrological Processes,2009, 23(7):1076–1089.
116 Rittger K,Bair E H, Kahl A, et al. Spatial Estimates of Snow Water Equivalent from Reconstruction[J]. Advances in Water Resources, 2016, 94:345-363.
117 Zhang L X, Shi J C, Zhang Z J, et al. The Estimation of Dielectric Constant of Frozen Soil-water Mixture at Microwave Bands[C]∥ IEEE International Geoscience and Remote Sensing Symposium,2003,4:2903-2905.
118 Mironov V L, Kerr Y H, Kosolapova L G, et al. A Temperature-dependent Dielectric Model for Thawed and Frozen Organic Soil at 1.4 GHZ[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(9): 4470-4477.
119 Mironov V L, Kosolapova L G, Fomin S V, et al. Experimental Analysis and Empirical Model of the Complex Permittivity of Five Organic Soils at 1.4 GHZ in the Temperature Range from -30 °C to 25 °C[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(6): 3778-3787.
120 Mironov V L, Karavayskiy A Y, Lukin Y I, et al. A Dielectric Model of Thawed and Frozen Arctic Soils Considering Frequency, Temperature, Texture and Dry Density[J]. International Journal of Remote Sensing, 2020, 41(10): 3845-3465.
121 Schwank M, Stahli M, Wydler H, et al. Microwave L-Band Emission of Freezing Soil[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(6): 1252-1261.
122 Zhao S, Zhang L, Zhang Y, et al. The Coherent Microwave Emission of Freezing Soil Experimental Research and Model simulation[C]∥ IEEE International Geoscience and Remote Sensing Symposium,2009,2:678-681.
123 England A W, Galantowicz J F, Zuerndorfer B W. A Volume Scattering Explanation for the Negative Spectral Gradient of Frozen Soil[C]∥ International Geoscience and Remote Sensing Symposium,1991,3:1175-1177.
124 Hao Z G, Zhao S J, Zhang L X, et al. Comparison of Microwave Emission Model for Frozen Soil and Field Observation[C]∥ IEEE International Geoscience and Remote Sensing Symposium ,2011:3097-3100.
125 Zhang T, Jiang L M, Zhao S J, et al. Development of a Parameterized Model to Estimate Microwave Radiation Response Depth of Frozen Soil[J]. Remote Sensing, 2019, 11(17):1-21.
126 Zheng D H, Li X, Wang X, et al. Sampling Depth of L-Band Radiometer Measurements of Soil Moisture and Freeze-Thaw Dynamics on the Tibetan Plateau[J]. Remote Sensing of Environment, 2019, 226:16-25.
127 Zuerndorfer B W, England A W, Dobson M C, et al. Mapping Freeze/Thaw Boundaries with SMMR Data[J]. Agricultural and Forest Meteorology, 1990, 52(1): 199-225.
128 Zuerndorfer B, England A W. Radiobrightness Decision Criteria for Freeze/Thaw Boundaries[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(1): 89-102.
129 Judge J, Galatowicz J F, England A W, et al. Freeze/Thaw Classification for Prairie Soils Using SSM/I Radiobrightnesses[J]. IEEE Transactions on Geoscience and Remote Sensing,1997,35(4):827-832.
130 Zhao T J, Zhang L X, Jiang L M, et al. A New Soil Freeze/Thaw Discriminant Algorithm Using AMSR-E Passive Microwave Imagery[J]. Hydrological Processes, 2011, 25(11): 1704-1716.
131 Han M L, Yang K, Qin J, et al. An Algorithm based on the Standard Deviation of Passive Microwave Brightness Temperatures for Monitoring Soil Surface Freeze/Thaw State on the Tibetan Plateau[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5): 2775-2783.
132 Jin R, Li X, Che T. A Decision Tree Algorithm for Surface Soil Freeze/Thaw Classification over China Using SSM/I Brightness Temperature[J]. Remote Sensing of Environment, 2009, 113(12): 2651-2660.
133 Kou X K, Jiang L M, Yan S, et al. Research on the Improvement of Passive Microwave Freezing and Thawing Discriminant Algorithms for Complicated Surface Conditions[C]∥ IEEE International Geoscience and Remote Sensing Symposium,2018:7161-7164.
134 Wang P K, Zhao T J, Shi J C, et al. Parameterization of the Freeze/Thaw Discriminant Function Algorithm Using Dense In-Situ Observation Network Data[J]. International Journal of Digital Earth, 2018, 12(8): 980-994.
135 Kou X K, Jiang L M, Yan S, et al. Detection of Land Surface Freeze-Thaw Status on the Tibetan Plateau Using Passive Microwave and Thermal Infrared Remote Sensing Data[J]. Remote Sensing of Environment, 2017, 199:291-301.
136 Kim Y, Kimball J S, Mcdonald K C, et al. Developing A Global Data Record of Daily Landscape Freeze/Thaw Status Using Satellite Passive Microwave Remote Sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(3): 949-960.
137 Roy A, Royer A, Derksen C, et al. Evaluation of Spaceborne L-Band Radiometer Measurements for Terrestrial Freeze/Thaw Retrievals in Canada[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(9): 4442-4459.
138 Rautiainen K, Parkkinen T, Lemmetyinen J, et al. SMOS Prototype Algorithm for Detecting Autumn Soil Freezing[J]. Remote Sensing of Environment, 2016, 180:346-360.
139 Derksen C, Xu X L, Dunbar R S, et al. Retrieving Landscape Freeze/Thaw State from Soil Moisture Active Passive (SMAP) Radar and Radiometer Measurements[J]. Remote Sensing of Environment, 2017, 194:48-62.
140 Frolking S, Mcdonald K C, Kimball J S, et al. Using the Space-Borne NASA Scatterometer (NSCAT) to Determine the Frozen and Thawed Seasons[J]. Journal of Geophysical Research-Atmospheres, 1999, 104(D22): 27895-27907.
141 Rawlins M A, Mcdonald K C, Frolking S, et al. Remote Sensing of Pan-Arctic Snowpack Thaw Using the Seawinds Scatterometer[J]. Journal of Hydrology, 2004, 312(1-4): 294-311.
142 Kimball J S, Mcdonald K C, Running S W, et al. Satellite Radar Remote Sensing of Seasonal Growing Seasons for Boreal and Subalpine Evergreen Forests[J]. Remote Sensing of Environment, 2004, 90(2): 243-258.
143 Kimball J S, Mcdonald K C, Frolking S E, et al. Radar Remote Sensing of the Spring Thaw Transition Across a Boreal Landscape[J]. Remote Sensing of Environment, 2004, 89(2): 163-175.
144 Rignot E, Way J B. Monitoring Freeze-thaw Along North-South Alaskan Transects Using ERS-1 SAR[J]. Remote Sensing of Environment, 1994,49(2):131-137.
145 Podest E, Mcdonald K C, Kimball J S. Multisensor Microwave Sensitivity to Freeze/Thaw Dynamics Across a Complex Boreal Landscape[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(11): 6818-6828.
146 Du J Y, Kimball J S, Azaderakhsh M, et al. Classification of Alaska Spring Thaw Characteristics Using Satellite L-Band Radar Remote Sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(1): 542-556.
147 Naeimi V, Paulik C, Bartsch A, et al. ASCAT Surface State Flag (SSF): Extracting Information on Surface Freeze/Thaw Conditions from Backscatter Data Using an Empirical Threshold-analysis Algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(7): 2566-2582.
148 Cohen J, Rautiainen K, Ikonen J, et al. A Modeling-based Approach for Soil Frost Detection in the Northern Boreal Forest Region with C-Band SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2): 1069-1083.
149 Azarderakhsh M, Mcdonald K, Norouzi H, et al. Using Sentinel-L SAR Measurements to Detect High Resolution Freeze and Thaw States in Alaska[C]∥ IEEE International Geoscience and Remote Sensing Symposium, 2018:2398-2399.
150 Muzalevskiy K V, Ruzicka Z. Signatures of Sentinel-1 Radar and SMAP Radiometer Depending on the Temperature of Frozen Arctic Soil in the Cooling and Heating Process of the Active Layer[C]∥ IEEE International Geoscience and Remote Sensing Symposium, 2018:7176-7179.
151 Prince M, Roy A, Royer A, et al. Timing and Spatial Variability of Fall Soil Freezing in Boreal Forest and Its Effect on SMAP L-Band Radiometer Measurements[J]. Remote Sensing of Environment, 2019, 231:1-10.
152 Wang J, Jiang L M, Cui H Z, et al. Evaluation and Analysis of SMAP, AMSR2 and Measures Freeze/Thaw Products in China[J]. Remote Sensing of Environment, 2020, 242:1-18.
153 Wang Pengxin, Wan Zhengming,Gong Jianya,et al. Advances in Drought Monitoring by Using Remotely Sensed Normalized Difference Vegetation Index and Land Surface Temperature Products[J]. Advances in Earth Science,2003, 18(4): 527-533.
153 王鹏新, 万正明, 龚健雅, 等. 基于植被指数和土地表面温度的干旱监测模型[J]. 地球科学进展, 2003, 18(4): 537-533
154 Price J C. Thermal Inertia Mapping: A New View of the Earth[J]. Journal of Geophysical Research, 1977, 82(18): 2582-2590.
155 Qin J, Yang K, Lu N, et al. Spatial Upscaling of In-Situ Soil Moisture Measurements based on MODIS-Derived Apparent Thermal Inertia[J]. Remote Sensing of Environment, 2013, 138:1-9.
156 Zhang R, Tian J, Mi S, et al. The Effect of Vegetation on the Remotely Sensed Soil Thermal Inertia and a Two-Source Normalized Soil Thermal Inertia Model for Vegetated Surfaces[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(4): 1725-1735.
157 Wu Shiwen, Wang Changkun, Liu Ya, et al.Inversion and Mapping of the Moisture Contentin Soil Profiles based on Hyperspectral Imaging Technology[J]. Spectroscopy snd Spectral Analysis, 2019, 39(9): 2847-2854.
157 吴士文, 王昌昆, 刘娅, 等. 高光谱成像的土壤剖面水分含量反演及制图[J]. 光谱学与光谱分析, 2019, 39(9): 2847-2854.
158 Paloscia S, Macelloni G, Santi E, et al. A Multifrequency Algorithm for the Retrieval of Soil Moisture on a Large Scale Using Microwave Data from SMMR and SSM/I Satellites[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(8): 1655-1661.
159 Njoku E G, Chan S K. Vegetation and Surface Roughness Effects on AMSR-E Land Observations[J]. Remote Sensing of Environment, 2006, 100(2): 190-199.
160 Jackson T J. Measuring Surface Soil Moisture Using Passive Microwave Remote Sensing[J]. Hydrological Processes, 1993, 7(2): 139-152.
161 O’ Neill P, Chan S, Njoku E, et al. Soil Moisture Active Passive (SMAP) Algorithm Theoretical Basis Document Level 2 & 3 Soil Moisture (Passive) Data Products[Z]. Jet Propulsion Laboratory California Institute of Technology, 2015.
162 Shi J C, Jiang L M, Zhang L X, et al. A Parameterized Multifrequency-polarization Surface Emission Model[J]. IEEE Transactions on Geoscience And Remote Sensing, 2005, 43(12): 2831-2841.
163 Cui H Z, Jiang L M, Du J Y, et al. Evaluation and Analysis of AMSR-2, SMOS, and SMAP Soil Moisture Products in the Genhe Area of China[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(16): 8650-8666.
164 Cui H Z, Jiang L M, Lu Z, et al. Improvement and Validation of QP Model with Dual-Channel Soil Moisture Retrieval Algorithm in Genhe, China[C]∥ IEEE International Geoscience and Remote Sensing Symposium, 2017: 4951-4954.
165 Njoke E G, Jackson T J, Lakshni V, et al. Soil Moisture Retrieval from AMSR-E[J]. IEEE Transactions on Geoscience and Remote Sensing , 2003, 41(2): 215-229.
166 Owe M, De J R, Holmes T. Multisensor Historical Climatology of Satellite-derived Global Land Surface Moisture[J]. Journal of Geophysical Research: Earth Surface, 2008, 113(F1): 1-17.
167 Kerr Y H, Waldteufel P, Richaume P, et al. The SMOS Soil Moisture Retrieval Algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(5): 1384-1403.
168 Lu H, Koike T, Fujii H, et al. Development of a Physically-based Soil Moisture Retrieval Algorithm for Spaceborne Passive Microwave Radiometers and Its Application to AMSR-E[J]. Journal of the Remote Sensing Society of Japan, 2009, 29(1): 253-262.
169 Koike T. Description of the GCOM-W1 AMSR2 Soil Moisture Algorithm[D]. Tokyo: School of Engineering the University of Tokyo, 2013.
170 Liou Y A, Liu S F, Wang W J. Retrieving Soil Moisture from Simulated Brightness Temperatures by a Neural Network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(8): 1662-1672.
171 Liu S F, Liou Y A, Wang W J, et al. Retrieval of Crop Biomass and Soil Moisture from Measured 1.4 and 10.65 Ghz Brightness Temperatures[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(6): 1260-1268.
172 Frate F D, Ferrazzoli P, Schiavon G. Retrieving Soil Moisture and Agricultural Variables by Microwave Radiometry Using Neural Networks[J]. Remote Sensing of Environment, 2003, 84(2): 174-183.
173 Paloscia S, Santi E, Pettinato S, et al. A Comparison between Two Algorithms for the Retrieval of Soil Moisture Using AMSR-E Data[J]. Frontiers in Earth Science, 2015, 3(16):1-10.
174 Kolassa J, Reichle R, Liu Q, et al. Estimating Surface Soil Moisture from SMAP Observations Using a Neural Network Technique[J]. Remote Sensing of Environment, 2018, 204:43-59.
175 Ulaby F T, Dobson M C, Bradley G A. Radar Reflectivity of Bare and Vegetation-covered Soil[J]. Advances in Space Research, 1981, 1(10): 91-104.
176 Puri S, Stephen H, Ahmad S. Relating TRMM Precipitation Radar Land Surface Backscatter Response to Soil Moisture in the Southern United States[J]. Journal of Hydrology, 2011, 402(1-2): 115-125.
177 Oh Y, Sarabandi K, Ulaby F T. An Empirical Model and an Inversion Technique for Radar Scattering from Bare Soil Surfaces[J]. IEEE Transactions on Geoscience and Remote Sensing , 1992, 30(2): 370-381.
178 Dubois P C, Van Z J, Engman T. Measuring Soil Moisture with Imaging Radars[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(4): 915-926.
179 Shi J C, Wang J, Hsu A Y, et al. Estimation of Bare Surface Soil Moisture and Surface Roughness Parameter Using L-Band SAR Image Data[J]. IEEE Transactions on Geoscience and Remote Sensing , 1997, 35(5): 1254-1266.
180 Attema E P W, Ulaby F T. Vegetation Modeled as a Water Cloud[J]. Radio Science, 1978, 13(2): 357-364.
181 Rawat K S, Singh S K, Ray R L, et al. Parameterization of the Modified Water Cloud Model (MWCM) Using Normalized Difference Vegetation Index (NDVI) for Winter Wheat Crop: A Case Study from Punjab, India[J]. Geocarto International, 2020: 1-14. doi:10.1081/10106049.2020.1783579.
doi: 10.1081/10106049.2020.1783579
182 Fung A K, Li Z, Chen K S. Backscattering from a Randomly Rough Dielectric Surface[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(2): 356-369.
183 Chen K S, Wu T D, Tsang L, et al. Emission of Rough Surfaces Calculated by the Integral Equation Method with Comparison to Three-dimensional Moment Method Simulations[J]. IEEE Transactions on Geoscience and Remote Sensing , 2003, 41(1): 90-101.
184 Paloscia S, Pampaloni P, Pettinato S, et al. The Retrieval of Soil Moisture from ENVISAT/ASAR Data[J]. Earsel Eproceedings, 2005, 4(1): 44-51.
185 Thoma D, Moran M, Bryant R, et al. Comparison of Four Models to Determine Surface Soil Moisture from C-Band Radar Imagery in A Sparsely Vegetated Semiarid Landscape[J]. Water Resources Research, 2006, 42(1): 1-12.
186 Ulaby F T, Sarabandi K, Mcdonald K, et al. Michigan Microwave Canopy Scattering Model[J]. International Journal of Remote Sensing, 1990, 11(7): 1223-1253.
187 Ferrazzoli P, Guerriero L. Passive Microwave Remote Sensing of Forests: A Model Investigation[J]. IEEE Transactions on Geoscience and Remote Sensing , 1996, 34(2): 433-443.
188 Zhan X, Miller S, Chauhan N, et al. Soil Moisture Visible/Infrared Radiometer Suite Algorithm Theoretical Basis Document[Z]. Raytheon Information Technology and Scientific Services, Lanham, Md, 2002.
189 Chauhan N S, Miller S, Ardanuy P. Spaceborne Soil Moisture Estimation at High Resolution: A Microwave-Optical/IR Synergistic Approach[J]. International Journal of Remote Sensing, 2003, 24(22): 4599-4622.
190 Song C, Jia L, Menenti M. Retrieving High-resolution Surface Soil Moisture by Downscaling AMSR-E Brightness Temperature Using MODIS LST and NDVI Data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(3): 935-942.
191 Piles M, Camps A, Vall-Llossera M, et al. Downscaling SMOS-derived Soil Moisture Using MODIS Visible/Infrared Data[J]. IEEE Transactions on Geoscience and Remote Sensing , 2011, 49(9): 3156-3166.
192 Cui H Z, Jiang L M, Zhou Z, et al. Downscaling of QP Model with Dual-channel Soil Moisture Retrievals over Genhe Area in China[C]∥ IEEE International Geoscience and Remote Sensing Symposium, 2018: 9118-9121.
193 Cui H Z,Jiang L M,Wang J,et al. Downscaling of SMAP Soil Moisture Products over GENHE Area in China[C]∥ IEEE International Geoscience and Remote Sensing Symposium, 2019: 7037-7040.
194 Song C Y, Jia L. A Method for Downscaling Fengyun-3B Soil Moisture based on Apparent Thermal Inertia[J]. Remote Sensing, 2016, 8(9): 1-16.
195 Merlin O, Chehbouni A, Walker J P, et al. A Simple Method to Disaggregate Passive Microwave-based Soil Moisture[J]. IEEE Transactions on Geoscience and Remote Sensing , 2008, 46(3): 786-796.
196 Fang B, Lakshmi V, Bindlish R, et al. Passive Microwave Soil Moisture Downscaling Using Vegetation Index and Skin Surface Temperature[J]. Vadose Zone Journal, 2013, 12(3): 1-19.
197 Fang B, Lakshmi V. Soil Moisture at Watershed Scale: Remote Sensing Techniques[J]. Journal of Hydrology, 2014, 516:258-272.
198 Pellenq J, Kalma J, Boulet G, et al. A Disaggregation Scheme for Soil Moisture based on Topography and Soil Depth[J]. Journal of Hydrology, 2003, 276(1): 112-127.
199 Merlin O, Chehbouni A, Boulet G, et al. Assimilation of Disaggregated Microwave Soil Moisture into a Hydrologic Model Using Coarse-Scale Meteorological Data[J]. Journal of Hydrometeorology, 2006, 7(6): 1308-1322.
200 Merlin O, Walker J, Chehbouni A, et al. Towards Deterministic Downscaling of SMOS Soil Moisture Using MODIS Derived Soil Evaporative Efficiency[J]. Remote Sensing of Environment, 2008, 112(10): 3935-3946.
201 Merlin O, Stefan V G, Amazirh A, et al. Modeling Soil Evaporation Efficiency in a Range of Soil and Atmospheric Conditions Using a Meta-analysis Approach[J]. Water Resources Research, 2016, 52(5): 3663-3684.
202 Merlin O, MalbÉTeau Y, Notel Y, et al. Performance Metrics for Soil Moisturedownscaling Methods: Application to DISPATCH Data in Central Morocco[J]. Remote Sensing, 2015, 7(4): 3783-3807.
203 Srivastava P K, Han D W, Ramirez M R, et al. Machine Learning Techniques for Downscaling SMOS Satellite Soil Moisture Using MODIS Land Surface Temperature for Hydrological Application[J]. Water Resources Management, 2013, 27(8): 3127-3144.
204 Chen S D, Zhang L, Guo M,et al. Spatial Downscaling Methods of Soil Moisture based on Multisource Remote Sensing Data and Its Application[J]. Water, 2019, 11(1401): 1-25.
205 Zhao W, SÁNchez N, Lu H, et al. A Spatial Downscaling Approach for the SMAP Passive Surface Soil Moisture Product Using Random Forest Regression[J]. Journal of Hydrology, 2018, 563:1009-1024.
206 Narayan U, Lakshmi V, Jackson T J. High-resolution Change Estimation of Soil Moisture Using L-band Radiometer and Radar Observations Made during the SMEX02 Experiments[J]. IEEE Transactions on Geoscience and Remote Sensing , 2006, 44(6): 1545-1554.
207 Piles M, Entekhabi D, Camps A. A Change Detection Algorithm for Retrieving High-resolution Soil Moisture from SMAP Radar and Radiometer Observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(12): 4125-4131.
208 Das N N, Entekhabi D, Njoku E G. An Algorithm for Merging SMAP Radiometer and Radar Data for High-resolution Soil-Moisture Retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(5): 1504-1512.
209 O'Neill P, Chauhan N, Jackson T. Use of Active and Passive Microwave Remote Sensing for Soil Moisture Estimation Through Corn[J]. International Journal of Remote Sensing, 1996, 17(10): 1851-1865.
210 Chauhan N S. Soil Moisture Estimation Under a Vegetation Cover: Combined Active Passive Microwave Remote Sensing Approach[J]. International Journal of Remote Sensing, 1997, 18(5): 1079-1097.
211 Lee K H, Anagnostou E N. A Combined Passive/Active Microwave Remote Sensing Approach for Surface Variable Retrieval Using Tropical Rainfall Measuring Mission Observations[J]. Remote Sensing of Environment, 2004, 92(1): 112-125.
212 Das N N, Entekhabi D E , Dunbar R S, et al. The SMAP Mission Combined Active-passive Soil Moisture Product at 9 km and 3 km Spatial Resolutions[J]. Remote Sensing of Environment, 2018, 211:204-217.
213 Zhan X, Houser P R, Walker J P, et al. A Method for Retrieving High-resolution Surface Soil Moisture from Hydros L-Band Radiometer and Radar Observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(6): 1534-1544.
214 Santi E, Paloscia S, Pettinato S, et al. On the Synergy of SMAP, AMSR2 and SENTINEL-1 for Retrieving Soil Moisture[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 65:114-123.
215 Li Xin, Huang Chunlin, Che Tao, et al. Progress and Prospect of Research on Land Surface Data Assimilation System in China[J]. Progress in Natural Science, 2007, 17(2): 163-173.
215 李新, 黄春林, 车涛, 等. 中国陆面数据同化系统研究的进展与前瞻[J]. 自然科学进展, 2007, 17(2): 163-173.
216 Bai L, Long D, Yan L. Estimation of Surface Soil Moisture with Downscaled Land Surface Temperatures Using a Data Fusion Approach for Heterogeneous Agricultural Land[J]. Water Resources Research, 2019, 55(2): 1105-1128.
217 Kim E, Forman B A, Wang L Z, et al. Space-time Coverage Scenarios for a Global Snow Satellite Constellation[C]∥ IEEE International Geoscience and Remote Sensing Symposium, 2019:5614-5616.
218 Ye N, Hills J, Walker J P, et al. Toward P-band Passive Microwave Sensing of Soil Moisture[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 99:1-5.
219 Li X, Cheng G, Liu S, et al. Heihe Watershed Allied Telemetry Experimental Research (Hiwater): Scientific Objectives and Experimental Design[J]. Bulletin of the American Meteorological Society, 2013, 94(8): 1145-1160.
220 Yang K, Qin J, Zhao L, et al. A Multiscale Soil Moisture and Freeze–Thaw Monitoring Network on the Third Pole[J]. Bulletin of the American Meteorological Society, 2013, 94(12): 1907-1916.
221 Jiang L M, Wang J, Cui H Z, et al. In Situ Soil Moisture and Temperature Network in Genhe Watershed and Saihanba Area in China[J]. Data in Brief, 2020, 31:1-9.
222 Zhao T J, Shi J C, Lv L Q, et al. Soil Moisture Experiment in the Luan River Supporting New Satellite Mission Oppor-tunities[J]. Remote Sensing of Environment, 2020, 240:1-21.
[1] 刘美,杜国明,于凤荣,匡文慧. 哈尔滨城乡梯度建设用地结构变化及不透水面遥感监测分析[J]. 遥感技术与应用, 2020, 35(5): 1206-1217.
[2] 董磊磊,王维真,吴月茹. 盐渍土介电特性及模型改进研究[J]. 遥感技术与应用, 2020, 35(4): 786-796.
[3] 李智礼,匡文慧,张澍. 近70 a天津主城区城市土地利用/覆盖变化遥感监测与时空分析[J]. 遥感技术与应用, 2020, 35(3): 527-536.
[4] 寇勇,王宁练,陈安安,刘凯. 1993~2016年喜马拉雅山西段杰纳布流域冰川变化遥感监测[J]. 遥感技术与应用, 2020, 35(3): 712-722.
[5] 王树果, 马春锋, 赵泽斌, 魏龙. 基于Sentinel-1及Landsat 8数据的黑河中游农田土壤水分估算[J]. 遥感技术与应用, 2020, 35(1): 13-22.
[6] 李雷,郑兴明,赵凯,李晓峰,王广蕊. 基于CCI土壤水分产品的干旱指数精度评价及其对东北地区粮食产量的影响[J]. 遥感技术与应用, 2020, 35(1): 111-119.
[7] 罗家顺,邱建秀,赵天杰,王大刚. 基于Sentinel-1数据的黑河中游土壤水分反演[J]. 遥感技术与应用, 2020, 35(1): 23-32.
[8] 陆峥,韩孟磊,卢麾,彭雪婷,蒙莎莎,刘进,杨晓帆. 基于AMSR2多频亮温的黑河流域中上游土壤水分估算研究[J]. 遥感技术与应用, 2020, 35(1): 33-47.
[9] 胡路,赵天杰,施建成,李尚楠,樊东,王平凯,耿德源,肖青,崔倩,陈德清. 基于地基微波辐射观测的土壤水分反演算法评估[J]. 遥感技术与应用, 2020, 35(1): 74-84.
[10] 陈勇强,杨娜,胡新,佟明远. SMOS与SMAP过境时段表层土壤水分的稳定性研究[J]. 遥感技术与应用, 2020, 35(1): 58-64.
[11] 劳从坤,杨娜,徐少博,汤燕杰,张恒杰. 反演策略对SMOS土壤水分反演算法的影响研究[J]. 遥感技术与应用, 2020, 35(1): 65-73.
[12] 范悦,邱建秀,董建志,张小虎,王大刚. 基于Triple Collocation方法的微波土壤水分产品不确定性分析与时空变化规律研究[J]. 遥感技术与应用, 2020, 35(1): 85-96.
[13] 王树果,刘伟,梁亮. 基于Triple-Collocation方法的微波遥感土壤水分产品不确定性分析及数据融合[J]. 遥感技术与应用, 2019, 34(6): 1227-1234.
[14] 刘克俭,闫敏,冯琦. 多层土壤观测数据同化的森林碳、水通量模拟[J]. 遥感技术与应用, 2019, 34(5): 950-958.
[15] 鲁军景, 孙雷刚, 黄文江.  作物病虫害遥感监测和预测预警研究进展[J]. 遥感技术与应用, 2019, 34(1): 21-32.