Please wait a minute...
img

官方微信

遥感技术与应用  2020, Vol. 35 Issue (6): 1273-1282    DOI: 10.11873/j.issn.1004-0323.2020.6.1273
冰雪遥感专栏     
基于时序像素跟踪算法的南伊内里切克冰川运动提取与特征分析
张齐民1,2(),郑一桐1,2,张露3,李治国4,闫世勇1,2()
1.自然资源部国土环境与灾害监测重点实验室,江苏 徐州 221116
2.中国矿业大学环境与测绘学院,江苏 徐州 221116
3.三亚中科遥感研究所,海南 三亚 572029
4.商丘师范学院 环境与规划学院,河南 商丘 476000
South Inylchek Glacier Surface Motion Extraction and Analysis based on Time-series Pixel Tracking Algorithm
Qimin Zhang1,2(),Yitong Zheng1,2,Lu Zhang3,Zhiguo Li4,Shiyong Yan1,2()
1.Key Laboratory of Land,Environment and Disaster Monitoring,Ministry of Natural Resources,Xuzhou 221116,China
2.School of Environment Science and Spatial Informatics,China University of Mining and Technology,Xuzhou 221116,China
3.Sanya Institute of Remote Sensing,Sanya 572029,China
4.Department of Surveying and Planning,Shangqiu Normal University,Shangqiu 476000,China
 全文: PDF(10569 KB)   HTML
摘要:

选用Sentinel-1A卫星TOPS模式下获取的8景升轨SAR数据,基于小基线集像素跟踪时序分析技术(Small BAseline Subset Pixel Tracking technique, SBAS-PT),获取了南伊内里切克冰川2018年1月至2018年12月期间不同时段的表面流速分布及其时空变化特征。研究结果表明:2018年南伊内里切克冰川1月到3月整体运动速率较小,从4月起速率明显增加,7月到8月达到最高,9月份起运动速率开始放缓,10月到12月期间冰川表面运动速率较小,全年的平均表面流速约为30cm·d-1。总体而言,南伊内里切克冰川中上游区域流速明显高于冰川下游,冰川下游冰川物质消融减薄和补给量减少以及表碛物增多等因素致使冰川末端区域逐渐趋于稳定。

关键词: 南伊内里切克冰川Sentinel?1A影像小基线集像素跟踪时序分析技术冰川表面运动速率    
Abstract:

The 8 scenes SAR imagery acquired by Sentinel-1A satellite in TOPS mode are employed in surface motion extraction and analysis of South Inylchek Glacier during period from January to December in 2018 with Small Baseline Subset Pixel Tracking Technique (SBAS-PT), which could overcome the limit of the temporal incoherence. The results show that its overall movement rate is relatively small during period from January to March. The ice motion increased significantly since April and reached the maximum during period between July and August, then the movement rate began to slow down from September. And the ice motion became slow again during the period between October and December. The average surface velocity of the whole year is about 30 cm·d-1. In general, the ice motion rate in the upstream part of South Inylchek Glacier is significantly higher than that in the lower part of the glaciers. Both the reduction of the ice material supplement and the increase of moraine on glacier surface have made the ice gradually become to be stable in downstream part of the glacier.

Key words: South Inylchek Glacier    Sentinel-1A image    Small baseline subset pixel tracking technique    Glacier surface motion rate
收稿日期: 2019-11-18 出版日期: 2021-01-26
ZTFLH:  P343.6  
基金资助: 海南省财政科技计划项目(418MS112);中国科学院战略性先导科技专项(A类)(XDA19070202);国家自然科学基金面上项目(41671072)
通讯作者: 闫世勇     E-mail: lwyzzqm@163.com;yanshiyong@cumt.edu.cn
作者简介: 张齐民(1996-),男,山东济南人,硕士研究生,主要从事雷达遥感与冰川变化研究。E?mail:lwyzzqm@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张齐民
郑一桐
张露
李治国
闫世勇

引用本文:

张齐民,郑一桐,张露,李治国,闫世勇. 基于时序像素跟踪算法的南伊内里切克冰川运动提取与特征分析[J]. 遥感技术与应用, 2020, 35(6): 1273-1282.

Qimin Zhang,Yitong Zheng,Lu Zhang,Zhiguo Li,Shiyong Yan. South Inylchek Glacier Surface Motion Extraction and Analysis based on Time-series Pixel Tracking Algorithm. Remote Sensing Technology and Application, 2020, 35(6): 1273-1282.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2020.6.1273        http://www.rsta.ac.cn/CN/Y2020/V35/I6/1273

图1  覆盖南伊内里切克冰川的Landsat-8 OLI假彩色影像(成像时间2018年7月21日)
图2  SAR影像小基线集时空基线分布图
图3  南伊内里切克冰川附近气象台站气温和降水资料(其中降水量由周边三个站点的降水量估算得出,冰川区的温度由周边其他站点温度经过海拔改化后估算得出)
图4  SBAS-PT数据处理流程
图5  基于互相关系数与协方差选点(a)初始像素偏移 (b)选点结果 (c)经过选点后的像素偏移量
图6  各影像对之间的冰川表面位移分布
图7  SVD分解后各时期的冰川表面运动速率分布
图8  南伊内里切克冰川表面位移场时间序列序结果
图9  冰川表面AB沿线运动速率和累积位移量
时间周期运动速率/cm平均运动速率变化率/%
平均标准差与全年平均对比与前一时期对比
2018年全年平均33.274.66
1月4日至2月21日29.014.70-12.8
2月21日至4月10日30.165.30-9.34.0
4月10日至5月28日37.135.1711.623.1
5月28日至7月15日37.826.8613.71.8
7月15日至9月1日38.916.4316.92.9
9月1日至10月19日32.185.293.2-17.3
10月19日至12月6日27.695.36-16.8-14.0
表1  南伊内里切克冰川中部消融区各时期运动速率统计表
1 Derkacheva A, Mouginot J, Millan R, et al. Data Reduction Using Statistical and Regression Approaches for Ice Velocity Derived by Landsat-8, Sentinel-1 and Sentinel-2[J]. Remote Sensing,2020,12:1935. doi:10.3390/rs12121935.
doi: 10.3390/rs12121935
2 Kääb A. Combination of SRTM3 and Repeat ASTER Data for Deriving Alpine Glacier Flow Velocities in the Bhutan Himalaya[J]. Remote Sensing of Environment, 2005, 94(4):463-474. doi: 10.1016/j.rse.2004.11.003.
doi: 10.1016/j.rse.2004.11.003
3 Fang Jinxin, Pu Tao, Shi Xiaoyi, et al. Runoff Variation and its Influence Factors in the Yanggong River Basin of Mt. Yulong Region Due to Climate Change[J], Journal of Glaci-ology and Geocrylolgy,2019,41(2):268-274.
3 方金鑫, 蒲焘,史晓宜, 等. 气候变化背景下玉龙雪山漾弓江流域径流变化及其影响因素分析[J]. 冰川冻土, 2019, 41(2): 268-274.
4 Li Zhiguo, Yao Tandong, Tian Lide. Progress in the Research on the Impact of Glacial Change on Water Resources [J]. Journal of Natural Science,2008,23(1):1-8.
4 李治国,姚檀栋,田立德.国内外冰川变化对水资源影响研究进展[J].自然资源学报,2008,23(1):1-8.
5 Zhang Xiaobo, Zhao Xuesheng, Ge Daqing, et al. Motion Characteristics of the South Inilchek Glacier Derived from New C-Band SAR Satellite[J]. Geomatics and Information Science of Wuhan University,2019,44(3):429-435.
5 张晓博,赵学胜,葛大庆,等. 利用新型C波段雷达卫星研究南伊内里切克冰川运动特征[J].武汉大学学报(信息科学版),2019,44(3):429-435.
6 Zheng Yitong. Design and Implementation of SAR Pixel Tracking Parallel Algorithms for Mountain Glacier Motion Monitoring[D]. Xuzhou: China University of Mining and Technology,2019.
6 郑一桐. 面向山地冰川运动监测的SAR偏移量跟踪算法并行化设计与实现[D]. 徐州:中国矿业大学,2019.
7 Strozzi T, Luckman A, Murray T, et al. Glacier Motion Estimation Using SAR Offset-Tracking Procedures[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11):2384-2391. doi: 10.1109/TGRS.2002.805079.
doi: 10.1109/TGRS.2002.805079
8 Shao Zhude, Ke Changqing. Upstream Velocity of the Amery Ice Shelf derived from Satellite RaDAR Future Tracking[J]. Chinese Journal of Polar Research,2016,28(3):324-330.
8 邵珠德,柯长青. 基于特征跟踪方法的Amery冰架上游流速估算[J],极地研究,2016,28(3):324-330.
9 Leprince S, Barbot S, Ayoub F, et al. Automatic and Precise Orthorectification, Coregistration, and Subpixel Correlation of Satellite Images, Application to Ground Deformation Measurements[J]. IEEE Transactions on Geoscience and Remote Sensing,2007,45(6): 1529-1558. doi:10.1109/TGRS.2006. 888937.
doi: 10.1109/TGRS.2006. 888937
10 Yan S Y, Liu G, Wang Y J, et al. Accurate Determination of Glacier Surface Velocity Fields with a DEM-Assisted Pixel-Tracking Technique from SAR Imagery[J]. Remote Sensing,2015,7:10898-10916. doi:10.3390/rs70810898.
doi: 10.3390/rs70810898
11 Casu F, Manconi A, Pepe A, et al. Deformation Time-series Generation in Areas Characterized by Large Displacement Dynamics: The SAR Amplitude Pixel-Offset SBAS Technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(7):2752-2763. doi: 10.1109/tgrs.2010.2104325.
doi: 10.1109/tgrs.2010.2104325
12 Euillades L D, Euillades P A, Riveros N C, et al. Detection of Glaciers Displacement Time-series Using SAR[J]. Remote Sensing of Environment, 2016, 184:188-198. doi: 10.1016/j.rse.2016.07.003.
doi: 10.1016/j.rse.2016.07.003
13 Nobakht M, Motagh M, Wetzel H U, et al. The Inylchek Glacier in Kyrgyzstan, Central Asia: Insight on Surface Kinematics from Optical Remote Sensing Imagery[J]. Remote Sensing, 2014, 6(1): 841-856. doi: 10.3390/rs6010841.
doi: 10.3390/rs6010841
14 Li Jia, Li Zhiwei, Wang Changcheng, et al. Using SAR Offset-tracking Approach to Estimate Surface Motion of the South Inylchek Glacier in Tianshan[J]. Chinese Journal of Geophysics,2013,56(4):1226-1236.
14 李佳, 李志伟, 汪长城,等. SAR偏移量跟踪技术估计天山南依内里切克冰川运动[J]. 地球物理学报,2013,56(4):1226-1236.
15 Han Haidong, Liu Shiyin, Ding Yongjian, et al. Near-Surface Meteorological Characteristics on the Koxkar Baxi Glacier, Tianshan[J]. Journal of Glaciology and Geocrylolgy,2008,30(6):967-975.
15 韩海东,刘时银,丁永建,等. 科其喀尔巴西冰川的近地层基本气象特征[J].冰川冻土,2008,30(6):967-975.
16 Neelmeijer J, Motagh M, Wetzel H U, et al. Observation of the Surface Velocity Field of Inylchek Glacier (Kyrgyzstan) by Means of TerraSAR-X Imagery[C]// Erdblicke – Perspektiven für die Geowissenschaften, 2012.
17 Li Yi, Yan Shiyong, Li Zhiguo, et al. The Flow State of South Inylchek Glacier in the Tianshan Mountains in 2016:Extraction and Analysis based on Landsat-8 OLI Image[J]. Journal of Glaciology and Geocryology,2017,39(6):1281-1288.
17 李毅,闫世勇,李治国,等. 基于Landsat-8 OLI影像的天山南伊内里切克冰川2016年运动状态提取与分析[J]. 冰川冻土,2017,39(6):1281-1288.
18 Osmonov A, Bolch T, Xi C, et al. Glacier Characteristics and Changes in the Sary-Jaz River Basin (Central Tien Shan, Kyrgyzstan)-1990-2010[J]. Remote Sensing Letters, 2013, 4(8): 725-734. doi:10.1080/2150704X.2013.789146.
doi: 10.1080/2150704X.2013.789146
19 Zhao Jiarui, Ke Changqing. Flow Velocity of the Pine Island Glacier, Antarctica West , Derived from Sentinel-1 SAR Data[J]. Journal of Glaciology and Geocryology,2019,41(1):12-18.
19 赵家锐,柯长青.基于Sentinel-1 SAR数据的南极松岛冰川流速监测[J].冰川冻土,2019,41(1):12-18.
20 Zhang M, Chen F, Tian B, et al. Characterization of Kyagar Glacier and Lake Outburst Floods in 2018 based on Time-Series Sentinel-1A Data[J]. Water, 2020, 12(1):184. doi:10.3390/w12010184.
doi: 10.3390/w12010184
21 Lemos A, Shepherd A, Mcmillan M, et al. Ice Velocity of Jakobshavn Isbræ, Petermann Glacier, Nioghalvfjerdsfjorden, and Zachariæ Isstrøm,2015~2017, from Sentinel 1-a/b SAR Imagery[J]. The Cryosphere, 2018, 12(6):2087-2097. doi: 10.5194/tc-12-2087-2018.
doi: 10.5194/tc-12-2087-2018
[1] 张天媛,黄季夏,曹云锋,王利,孙宇晗,杨林生. 北极重要海峡海冰密集度时空变化呈现异质性[J]. 遥感技术与应用, 2019, 34(6): 1162-1172.
[2] 杨燕,李震,黄磊,田帮森. 高分辨率SAR影像提取冰川面积与冰面河[J]. 遥感技术与应用, 2019, 34(6): 1155-1161.
[3] 张正,肖鹏峰,张学良,冯学智,杨永可,胡瑞,盛光伟,刘豪. 青藏高原融雪期积雪反照率特性分析[J]. 遥感技术与应用, 2019, 34(6): 1146-1154.
[4] 王磊, 蒋宗立, 刘时银, 上官冬辉, 张勇. 中巴公路沿线冰川运动特征[J]. 遥感技术与应用, 2019, 34(2): 412-423.