Please wait a minute...
img

官方微信

遥感技术与应用  2020, Vol. 35 Issue (6): 1360-1367    DOI: 10.11873/j.issn.1004-0323.2020.6.1360
灯光遥感专栏     
志愿者民航客机夜光遥感光污染监测初步研究
唐倩迪1(),汪驰升2,3(),王永全2,宿瑞博1,江锦成4,崔红星2
1.深圳大学 土木与交通工程学院,广东 深圳 518060
2.深圳大学 建筑与城市规划学院 自然资源部大湾区地理环境监测重点实验室,广东 深圳 518060
3.深圳大学 建筑与城市规划学院 广东省城市空间信息工程重点实验室,广东 深圳 518060
4.中国科学院深圳先进技术研究院,广东 深圳 518055
Preliminary Study on Light Pollution Monitoring based on Volunteered Passenger Aircraft Remote Sensing
Qiandi Tang1(),Chisheng Wang2,3(),Yongquan Wang2,Ruibo Su1,Jincheng Jiang4,Hongxing Cui2
1.College of Civil And Traffic Engineering,Shenzhen University,Shenzhen 518060,China
2.Key Laboratory for Geo-Environmental Monitoring of Great Bay Area,MNR,School of Architecture & Urban Planning,Shenzhen University,Shenzhen 518060,China
3.Guangdong Key Laboratory of Urban Informatics,School of Architecture & Urban Planning,Shenzhen University,Shenzhen 518060,China
4.. Shenzhen Institutes of Advanced Technology,Chinese Academy of Sciences,Shenzhen 518055,China
 全文: PDF(4150 KB)   HTML
摘要:

夜光影像分辨率低、时效性差等问题是夜光遥感光污染研究发展的一大阻力。对此应用一种新型的夜光遥感数据获取方式——志愿者民航客机遥感(VPARS)来采集长沙市高分辨率夜光遥感数据,结合长沙市2018年商业POI数据,对光污染来源及特征进行分析,探索了VPARS方法在光污染研究领域的初步应用。结果表明:志愿者民航客机遥感可以有效获取城市小尺度的高精度夜光遥感数据,在光污染监测应用方面具备很大潜力。对长沙市VPARS夜光数据的初步分析结果显示,长沙市购物服务、生活服务、餐饮服务类POI发光比例高,亮度系数高于平均值,是长沙市光污染的主要来源;出行服务类、公共服务设施类POI虽发光比例低,但亮度系数达到最大值1.82,光污染程度较高;长沙市光污染呈商业区聚集及城市核心聚集模式。

关键词: 城市光污染夜光遥感志愿者民航客机遥感空间分析长沙市    
Abstract:

The problems of low resolution and poor timeliness of nightlight remote sensing images are the resistance to the development of light pollution research. In this regard, a novel method to capture nightlight remote sensing image called Volunteered Passenger Aircraft Remote Sensing (VPARS) is used to obtain high-resolution nighttime light imagery from Changsha City, combined with the commercial POI data in 2018, the source and the patterns of light pollution was analyzed, and the preliminary application of VPARS in light pollution research was explored. The results showed that the Volunteered Passenger Aircraft Remote Sensing can effectively obtain high-precision night-time remote sensing data of cities, and has great potential in light pollution monitoring applications. According to the preliminary analysis of the VPARS night-light remote sensing image of Changsha City, the POI of shopping service, living service and catering service are responsible for more than half of the detected light output, and the brightness coefficient of them is much higher than the average value, which makes them the main source of light pollution in Changsha. Although the POI of travel service and public service facilities has a low luminous ratio, the brightness coefficient reaches a maximum of 1.82, and the degree of light pollution is high. Light pollution in Changsha is mainly concentrated in commercial districts and urban cores.

Key words: Urban light pollution    Night-light remote sensing    Volunteered Passenger Aircraft Remote Sensing    Spatial analysis    Changsha city
收稿日期: 2019-09-20 出版日期: 2021-01-26
ZTFLH:  TP79  
基金资助: 深圳市科创委研究项目(KQJSCX20180328093453763);国家自然科学基金项目(41974006);广东省教育厅特色创新项目(2018KTSCX196)
通讯作者: 汪驰升     E-mail: 1810333010@email.edu.cn;wangchisheng@szu.edu.cn
作者简介: 唐倩迪(1995-),女,广西桂林人,硕士研究生,主要从事夜光遥感分析及应用研究。E?mail:1810333010@email.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
唐倩迪
汪驰升
王永全
宿瑞博
江锦成
崔红星

引用本文:

唐倩迪,汪驰升,王永全,宿瑞博,江锦成,崔红星. 志愿者民航客机夜光遥感光污染监测初步研究[J]. 遥感技术与应用, 2020, 35(6): 1360-1367.

Qiandi Tang,Chisheng Wang,Yongquan Wang,Ruibo Su,Jincheng Jiang,Hongxing Cui. Preliminary Study on Light Pollution Monitoring based on Volunteered Passenger Aircraft Remote Sensing. Remote Sensing Technology and Application, 2020, 35(6): 1360-1367.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2020.6.1360        http://www.rsta.ac.cn/CN/Y2020/V35/I6/1360

图1  研究区域示意图
代码序号名称代码序号名称
01餐饮08汽车服务
02购物09教育
03住宿10医疗
04出行11旅游
05文体娱乐12企事业单位
06金融服务13行政机构
07生活服务14公共服务设施
表1  POI分类表
图2  研究区夜光影像
影像来源空间分辨率/m波段重访周期
DMSP/OLS2 700112小时
NPP/VIIRS742112小时
Luojia 1—01130115天
VPARS8.73灵活
表2  参数表
图3  计算参数示意图
图4  DMSP/OLS、珞珈一号及PARS采集的长沙黄花机场附近夜光图像
图5  珞珈一号与VPARS影像DN值散点图
序号POI类型亮度系数发光比例/%序号POI类型亮度系数发光比例/%
1餐饮服务1.7211.628汽车服务1.553.18
2购物服务1.7632.939教育服务1.704.45
3住宿服务1.785.2110医疗服务1.762.80
4出行服务1.828.9111旅游服务1.690.30
5文体娱乐1.722.6412企事业单位1.469.55
6金融服务1.651.6713行政机构1.742.35
7生活服务1.7513.7914公共服务设施1.820.62
表3  POI发光比例及亮度系数
图6  长沙市光污染模式示意图
1 Shi K F, Yu B L, Huang Y X, et al. Evaluating the Ability of NPP-VIIRS Nighttime Light Data to Estimate the Gross Domestic Product and the Electric Power Consumption of China at Multiple Scales: A Comparison with DMSP-OLS Data[J]. Remote Sensing, 2014, 6(2):1705-1724.
2 Chen Z Q, Yu B L, Song W, et al. A New Approach for Detecting Urban Centers and Their Spatial Structure With Nighttime Light Remote Sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017(99):1-15. doi:10.1109/TGRS.2017,2725917.
doi: 10.1109/TGRS.2017
3 Stevens R G, Brainard G C, Blask D E, et al. Breast Cancer and Circadian Disruption from Electric Lighting in the Modern World[J]. A Cancer Journal for Clinicians, 2014, 64(3):207-218.
4 Wyse C A, Biello S M, Gill J M R. The Bright-nights and Dim-days of the Urban Photoperiod: Implications for Circadian Rhythmicity, Metabolism and Obesity[J]. Annals of Medicine, 2014, 46(5):253-263.
5 Vollmer C, Michel U, Randler C. Outdoor Light at Night (LAN) Is Correlated with Eveningness in Adolescents[J]. Chronobiology International, 2012, 29(4):502-508.
6 Hu Z Y, Hu H D, Huang Y X. Association between Nighttime Artificial Light Pollution and Sea Turtle Nest Density along Florida Coast: A Geospatial Study Using VIIRS Remote Sensing Data[J]. Environmental Pollution, 2018, 239(AUG.):30-42.
7 Russart K L G, Nelson R J. Artificial Light at Night Alters Behavior in Laboratory and Wild Animals[J]. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 2018, 329(8-9): 401-408.
8 Gaston K J, Bennie J, Davies T W, et al. The Ecological Impacts of Nighttime Light Pollution: A Mechanistic Appraisal.[J]. Biological Reviews, 2013, 88(4):912-927.
9 Davies T W , Coleman M , Griffith K M , et al. Night-time lighting Alters the Composition of Marine Epifaunal Communities[J]. Biology Letters, 2015, 11(4):20150080.doi:10.1098/rsbl.2015.0080
doi: 10.1098/rsbl.2015.0080
10 Riegel K W. Light Pollution: Outdoor Lighting is a Growing Threat to Astronomy[J].Science,1973,179(4080):1285-1291.
11 Falchi F, Cinzano P, Duriscoe D, et al. The New World Atlas of Artificial Night Sky Brightness[J]. Science Advances, 2016, 2(6): e1600377. doi:10.1126/sciadv.1600377.
doi: 10.1126/sciadv.1600377
12 Cinzano P, Falchi F, Elvidge C D. The First World Atlas of the Artificial Night Sky Brightness[J]. Monthly Notices of the Royal Astronomical Society, 2001, 328(3): 689-707.
13 Luginbuhl C B, Lockwood G W, Davis D R, et al. From the Ground up I: Light Pollution Sources in Flagstaff, Arizona[J]. Publications of the Astronomical Society of the Pacific, 2009, 121(876):185-203.
14 Li Deren, Li Xi. An Overview on Data Mining of Nighttime Light Remote Sensing[J]. Acta Geodaetica et Cartographica Sinica.2015,44(6):591-601.李德仁,李熙.论夜光遥感数据挖掘[J].测绘学报, 2015, 44(6):591-601.
15 Bennie J, Davies T W, Duffy J P, et al. Contrasting Trends in Light Pollution across Europe based on Satellite Observed Night Time Lights[J]. Scientific Reports, 2014, 4(1): 1-6.
16 Jiang W, He G J, Long T F, et al. Potentiality of Using Luojia 1-01 Nighttime Light Imagery to Investigate Artificial Light Pollution[J]. Sensors, 2018, 18(9):2900. doi:10.3390/ s18092900.
doi: 10.3390/ s18092900
17 Kuechly H U, Kyba C C M, Ruhtz T, et al. Aerial Survey and Spatial Analysis of Sources of Light Pollution in Berlin, Germany[J].Remote Sensing of Environment,2012,126(11):39-50.
18 Wang C S,Wang Y Q,Wang L Y, et al. Volunteered Remote Sensing Data Generation with Air Passengers as Sensors[J]. International Journal of Digital Earth, 2020(4). doi:10.1080/17538947.2020.1808721.
doi: 10.1080/17538947.2020.1808721
19 Snavely N, Seitz S M, Szeliski R. Modeling the World from Internet Photo Collections[J]. International Journal of Computer Vision, 2008, 80(2):189-210.
20 Pan Sidong. Spatial Coupling between Housing Development and Economic Growth based on Night Light Remote Sensing and Residential POI[J].Journal of Geo-information Science,2019(5):646-652.潘思东.基于夜光遥感和小区POI的住宅发展与经济增长的空间耦合研究[J].地球信息科学学报, 2017,19(5):646-652.
21 Ren Guoyan. The Agglomeration Characteristics and Influencing Factors of Exhibition Venues in Yangtze River Delt[J], Economic Geography,2014,34(9):86-92.
21 任国岩.长山角会展场馆空间聚集特征及影响因素[J].经济地理,2014,34(9):86-92.
22 Zhou Xingang, Yue Yang, Ye Jia'an, et al. Uncertainty in Spatial Analysis of Dynamic Data-Identifying City Center[J]. Geomatics and Information Science of Wuhan University, 2014, 39(6):701-705.
22 周新刚, 乐阳, 叶嘉安,等. 动态数据空间分析的不确定性问题——以城市中心识别为例[J]. 武汉大学学报·信息科学版, 2014, 39(6): 701-705.
23 Zhang Q L, Schaaf C, Seto K C. The Vegetation Adjusted NTL Urban Index: A New Approach to Reduce Saturation and Increase Variation in Nighttime Luminosity[J]. Remote Sensing of Enviroment,2013,129(2):32-41.
24 Zhang Xuehua,Wang Xiaoqin,Yuan Xiaoxiang. Classification of Typical Building Roof Geometry Types based on Dense Point Clouds of FM Method[J].Earthquake,2017,37(3):127-137.
24 张雪华,王晓青,袁小祥.基于SFM方法生成的密集点云数据的典型建筑物分类研究[J]. 地震, 2017, 37(3):127-137.
25 Wang C S, Ke J Z, Xiu W Q, et al. Emergency Response Using Volunteered Passenger Aircraft Remote Sensing Data: A Case Study on Flood Damage Mapping[J]. Sensors, 2019, 19(19):4163. doi:10.3390/s19194163.
doi: 10.3390/s19194163
26 Wang Yajun. Light Pollution and Prevention Countermeasures[J].Journal of Safety and Environment, 2004, 4(1):56-59.
26 王亚军.光污染及其防治[J].安全与环境学报, 2004,4(1):56-59.
27 Yuan J,Zheng Y,Xie X.Discovering Regions of Different Fu-nctions in a City Using Human Mobility and POIs[C]∥ Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2012:186-194.
[1] 马真东,摆玉龙. 基于地理处理服务的地下水脆弱性评价研究[J]. 遥感技术与应用, 2018, 33(4): 759-765.
[2] 孟庆岩,孙云晓,张佳晖,等. 基于多源遥感的建筑区绿化垂直分布特征与空间配置分析——以匈牙利塞克什白堡市为例[J]. 遥感技术与应用, 2018, 33(2): 370-376.
[3] 王雪梅,马明国. 关联DMSP-OLS灯光数据的全球发文量态势分析[J]. 遥感技术与应用, 2017, 32(6): 1093-1099.
[4] 赵峰,汪云甲,闫世勇. 时序InSAR技术地表沉降监测结果可靠性及沉降梯度分析[J]. 遥感技术与应用, 2015, 30(5): 969-979.
[5] 张鸿辉,尹长林,曾永年,游胜景,陈光辉. 基于SLEUTH模型的城市增长模拟研究——以长沙市为例[J]. 遥感技术与应用, 2008, 23(6): 618-623.