Please wait a minute...
img

官方微信

遥感技术与应用  2020, Vol. 35 Issue (6): 1414-1425    DOI: 10.11873/j.issn.1004-0323.2020.6.1414
遥感应用     
基于多频被动微波遥感的土壤水分反演—以黑河上游为例
王舒1(),蒋玲梅2,王健2
1.国家气象信息中心,北京 100081
2.北京师范大学/中国科学院遥感与数字地球研究所遥感科学国家重点实验室,北京师范大学地理科学学部,北京 100875
 全文: PDF(7295 KB)   HTML
摘要:

土壤水分是陆地生态系统中最重要的组成部分,如何有效地得到高精度的土壤水分产品成为当前研究最为关注的问题。被动微波遥感具有监测面积大、重访周期短、对土壤水分敏感等优点,成为反演土壤水分最有潜力的方式。基于SMOS(Soil Moisture and Ocean Salinity)和AMSR2(The Advanced Microwave Scanning Radiometer-2)数据,通过研究L波段与C波段融合亮度温度在土壤水分反演中的潜力,发展多频率土壤水分反演算法,并对黑河上游4个像元开展土壤水分反演研究。结果表明:①利用L/C组合亮温反演结果与实测数据较为吻合,长时间内变化趋势一致,相关系数为0.841,均方根误差为0.063 m3/m3。②通过与SMOS和AMSR2官方土壤水分产品比较发现,AMSR2土壤水分产品存在明显的低估,SMOS土壤水分产品缺失值较多,无法得到较为完整的土壤水分时间序列;利用L/C多频率组合反演得到的结果明显优于官方土壤水分产品。融合L与C波段亮温数据,可有效提高反演土壤水分精度,实现高精度土壤水分的获取。

关键词: 土壤水分AMSR2SMOS黑河上游    
Key words: Soil moisture    AMSR2    SMOS    HiWATER
收稿日期: 2019-12-09 出版日期: 2021-01-26
ZTFLH:  TP79  
基金资助: 国家自然科学基金青年科学基金项目(41701411)
作者简介: 王舒(1987—),女,山西大同人,博士,高级工程师,主要从事微波土壤水分反演研究。E?mail:wangshu@cma.gov.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王舒
蒋玲梅
王健

引用本文:

王舒,蒋玲梅,王健. 基于多频被动微波遥感的土壤水分反演—以黑河上游为例[J]. 遥感技术与应用, 2020, 35(6): 1414-1425.

链接本文:

http://www.rsta.ac.cn/CN/Y2020/V35/I6/1414

图1  研究区概况及像元站点分布情况
像元容重/(g/cm3)砂土含量/%粘土含量/%

WATER-NET1

WATER-NET2

WATER-NET3

WATER-NET4

1.46

1.52

1.52

1.43

43.12

48.70

49.13

40.11

17.14

11.50

11.81

18.10

表1  研究区内所选像元的土壤质地信息
图2  研究区4个像元实测土壤水分和地表温度时间序列图
图3  C波段全球地表粗糙度Hr图(基于AMSR-E观测)
像元HrL/C NAMSR2 NSMOS N

WATERNET-piexl1

WATERNET-piexl 2

WATERNET-piexl 3

WATERNET-piexl 4

0.8

0.5

0.5

0.8

9

41

43

46

9

39

40

43

1

8

3

8

表2  4个像元的Hr值和反演有效数据
图4  黑河上游的土壤水分结果
图5  黑河上游4像元土壤水分反演结果
图6  黑河上游4像元实测土壤水分反演、反演土壤水分、反演植被光学厚度时间序列曲线图
1 Crow W T, Koster R D, Reichle R H, et al. Relevance of Time-varying and Time-invariant Retrieval Error Sources on the Utility of Spaceborne Soil Moisture Products[J]. Geophysical Research Letters, 2005, 32(24):L24405.
2 Dobriyal P, Qureshi A, Badola R, et al. A Review of the Methods Available for Estimating Soil Moisture and Its Implications for Water Resource Management[J]. Journal of Hydrology (Amsterdam), 2012, 458-459:110-117.
3 De Lannoy G, Reichle R H, Pauwels V R N. Global Calibration of the GEOS-5 L-Band Microwave Radiative Transfer Model over Nonfrozen Land Using SMOS Observations[J]. Journal of Hydrometeorology, 2013, 14(3):765-785.
4 Rosnay P D, Balsamo G, Albergel Clément. Initialisation of Land Surface Variables for Numerical Weather Prediction[J]. Surveys in Geophysics, 2014, 35(3):607-621.
5 Mallick K, Bhattacharya B K, Patel N K. Estimating Volumetric Surface Moisture Content for Cropped Soils Using a Soil Wetness Index based on Surface Temperature and NDVI[J]. Agricultural and Forest Meteorology, 2009, 149(8):1327-1342.
6 Stisen S, Sandholt I, Rgaard N A, et al. Combining the Triangle Method with Thermal Inertia to Estimate Re+gional Evapotranspiration-Applied to MSG-SEVIRI Data in the Senegal River basin[J]. Remote Sensing of Environment, 2008, 112(3):1242-1255.
7 Njoku E G, Jackson T J, Lakshmi V, et al. Soil Moisture Retrieval from AMSR-E[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(2):215-229.
8 Wigneron J P, Schmugge T, Chanzy A, et al. Use of Passive Microwave Remote Sensing to Monitor Soil Moisture[J]. Agronomie1998, 18: 27–43.
9 Jackson T J, Gasiewski A J, Oldak A, et al. Soil Moisture Retrieval Using the C-band Polarimetric Scanning Radiometer During the Southern Great Plains 1999 Experiment[J]. IEEE Transactions on Geosciences and Remote Sensing, 2002, 40, 2151–2161.
10 Njoku EG, Li L. Retrieval of Land Surface Parameters Using Passive Microwave Measurements at 6~18 GHz[J]. IEEE Transactions on Geoscience and Remote Sensing,1999 37: 79-93.
11 Maeda T, Imaoka K, Kachi M, et al. Status of GCOM-W1/AMSR2 Development, Algorithms, and Products[C]∥ Spie Remote Sensing. International Society for Optics and Photonics, 2011.
12 Kerr Y H, Waldteufel P, Wigneron J P, et al. The SMOS Mission: New Tool for Monitoring Key Elements of the Global Water Cycle[J]. Proceedings of the IEEE, 2010,98: 666-687.
13 Entekhabi D, Njoku E G, O'Neill P E, et al. The Soil Moisture Active Passive (SMAP) Mission[J]. Proceedings of the IEEE, 2010,98(5):704-716.
14 Njoku E G,Chan S K. Vegetation and Surface Roughness Effects on AMSR-E Land Observations[J]. Remote Sensing of Environment, 2006, 100: 190-199.
15 Zhao T J, Zhang L X, Shi J C, et al. A Physically based Statistical Methodology for Surface Soil Moisture Retrieval in the Tibet Plateau Using Microwave Vegetation Indices[J]. Journal of Geophysical Research, 2011,116: 185-212.
16 Wigneron J P, Calvet J C, Pellarin T, et al. Retrieving Near-surface Soil Moisture from Microwave Radiometric Observations: Current Status and Future Plans[J]. Remote Sensing of Environment, 2003, 85: 489–506.
17 Al Bitar A, Leroux D, Kerr Y H, et al. Evaluation of SMOS Soil Moisture Products over Continental U.S. Using the SCAN/SNOTEL Network[J]. IEEE Transactions on Geoscience and Remote Sensing,2012, 50: 1572–1586.
18 Lu H, Koike T, Ohta T, et al. Development of a Soil Moisture Retrieval Algorithm for Spaceborne Passive Microwave Radiometers and Its Application to AMSR-E and SSM/I[J]. Journal of Low Frequency Noise Vibration and Active Control, 2007,29:1177-1180.
19 Jackson T J, Cosh M H, Bindlish R, et al. Validation of Advanced Microwave Scanning Radiometer Soil Moisture Products[J]. IEEE Transactions on Geoscience and Remote Sensing,2010, 48: 4256-4272.
20 Kerr Y H, Waldteufel P, Richaume P, et al. The SMOS Soil Moisture Retrieval Algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(5):1384-1403.
21 Wigneron J P, Kerr Y, Waldteufel P, et al. L-band Microwave Emission of the Biosphere (L-MEB) Model: Description and Calibration Against Experimental Data Sets over Crop Fields[J]. Remote Sensing of Environment, 2007,107: 639-655.
22 Ge Yong,Wang Jinghao,Wang Jinfeng,et al. Regression Kriging Model-based Sampling Optimization Design for the Ecohydrology Wireless Sensor Network[J]. Advances in Earth Sciences,2012,27(9):1006-1013.
22 葛咏,王江浩,王劲峰,等.基于回归克里格的生态水文无线传感器网络布局优化[J].地球科学进展, 2012,27(9):1006-1013.
23 Li Xin,Liu Shaomin,Ma Mingguo,et al.HiWATER:An Integrated Remote Sensing Experiment on Hydrological and Ecological Processes in the Heihe River Basin[J].Advances in Earth Sciences, 2012,27(5): 481-498.
23 李新, 刘绍民, 马明国, 等. 黑河流域生态—水文过程综合遥感观测联合试验总体设计[J]. 地球科学进展, 2012,27(5): 481-498.
24 Li X, Cheng G, Liu S, et al. Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific Objectives and Experimental Design[J]. Bulletin of the American Meteorological Society, 2013, 94(8):1145-1160.
25 Jin R,Li X,Yan B,et al.A Nested Ecohydrological Wireless Sensor Network for Capturing the Surface Heterogeneity in the Midstream Areas of the Heihe River Basin,China[J].IEEE Geoscience & Remote Sensing Letters,2014,11(11):205-2019.
26 Njoku E G, Ashcroft P, Chan T K, et al. Global Survey and Statistics of Radio-frequency Interference in AMSR-E Land Observations[J]. IEEE Transactions on Geoscience and Remote Sensing,2005, 43: 938-947.
27 de Nijs A H A, Parinussa R M,et al.A Methodology to Determine Radio-frequency Interference in AMSR2 Observations[J]. IEEE Transactions on Geoscience and Remote Sensing,2015,53:5148-5159.
28 Al-Yaari A, Wigneron J P, Ducharne A, et al. Global-scale Evaluation of Two Satellite-based Passive Microwave Soil Moisture Datasets (SMOS and AMSR-E) with Respect to Land Data Assimilation System Estimates[J]. Remote Sensing of Environment, 2014,149: 181-195.
29 Parrens M, Wigneron J P, Richaume P, et al. Considering Combined or Separated Roughness and Vegetation Effects in Soil Moisture Retrievals[J]. International Journal of Applied Earth Observation and Geoinformation, 2017, 55:73-86.
30 Mo T,Choudhury B J, Schmugge T J, et al. A Model for Microwave Emission from Vegetation-covered Fields[J]. Journal of Geophysical Research Oceans,1982,87:11229–11237.
31 Fernandez-Moran R, Al-Yaari A, Mialon A, et al. SMOS-IC: An Alternative SMOS Soil Moisture and Vegetation Optical Depth Product[J]. Remote Sensing, 2017, 9(5):457. doi:10.3390/rs9050457.
doi: 10.3390/rs9050457
32 Mladenova I E, Jackson T J, Njoku E, et al. Remote Monitoring of Soil Moisture Using Passive Microwave-based Techniques-Theoretical basis and Overview of Selected Algorithms for AMSR-E[J]. Remote Sensing of Environment, 2014,144: 197-213.
33 Choudhury B J, Schmugge T J, Chang A, et al. Effect of Surface Roughness on the Microwave Emission from Soil[J]. Journal of Geophysical Research Atmospheres,1979, 84: 5699-5706.
34 Shi J, Jiang L, Zhang L, et al. Physically Based Estimation of Bare-surface Soil Moisture With the Passive Radiometers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006,44: 3145-3153.
35 Wang J R, O'Neill P E, Jackson T J, Multifrequency Measurements of the Effects of Soil Moisture, Texture Soil, And Surface Roughness[J]. IEEE Transactions on Geoscience and Remote Sensing, 1983,21: 44-51.
36 Montpetit B, Royer A, Wigneron J P, Evaluation of Multi-frequency Bare Soil Microwave Reflectivity Models[J]. Remote Sensing of Environment, 2015,162: 186-195.
37 Shu W, Jean-Pierre W, Ling-Mei J, et al. Global-scale Evaluation of Roughness Effects on C-Band AMSR-E Observations[J]. Remote Sensing, 2015, 7(5):5734-5757.
38 Martens B, Lievens H, Walker J P, An Alternative Roughness Parameterization For Soil Moisture Retrievals From Passive Microwave Observations[C]∥ 2013 ESA Living Planet Symposium,2013.
39 Lawrence H, Wigneron J P, Demontoux F, et al. Evaluating the Semiempirical H- Q Model Used to Calculate the L-Band Emissivity of a Rough Bare Soil[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013,51: 4075-4084.
40 Wang J R, O'Neill P E, Jackson T J, et al. Multifrequency Measurements of the Effects of Soil Moisture, Soil Texture, And Surface Roughness[J]. IEEE Transactions on Geoscience and Remote Sensing,1983, 21(1): 44-51.
41 Jackson T J, ASCE A M. Profile Soil Moisture from Surface Measurements[J]. Journal of the Irrigation and Drainage Division, 1980,106:82-92.
42 Parrens M, Wigneron J P, Richaume P, et al. Global-scale Surface Roughness Effects at L-band as Estimated from SMOS Observations[J]. Remote Sensing of Environment, 2016, 181:122-136.
43 Mo T, Schmugge T J. A Parameterization of the Effect of Surface Roughness on Microwave Emission[J]. IEEE Transactions on Geoscience and Remote Sensing,1987, 25: 481-486.
44 Wigneron J P, Laguerre L, Kerr Y H. A Simple Parameterization of the L-band Microwave Emission from Rough Agricultural Soils[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001,39: 1697-1707.
45 Grant J P, Wigneron J P, Griend A A V D, et al. A Field Experiment on Microwave Forest Radiometry: L-band Signal Behaviour for Varying Conditions of Surface Wetness[J]. Remote Sensing of Environment, 2007,109: 10-19.
46 Saleh K, Wigneron J P, Rosnay P D, et al. Impact of Rain Interception by Vegetation and Mulch on the L-band Emission of Natural Grass[J]. Remote Sensing of Environment,2006, 101: 127-139.
47 Wu Q,Liu H,Wang L,et al. Evaluation of AMSR2 Soil Moisture Products over the Contiguous United States Using in Situ Data from the International Soil Moisture Network[J]. International Journal of Applied Earth Observation and Geoinformation, 2016, 45:187-199.
48 Lu Zheng, Chai Linna, Zhang Tao,et al. Evaluation of AMSR2 Retrievals Using Observation of Soil Moisture Network on the Upper and Middle Reaches of Heihe River Basin[J].Remote Sensing Technology and Application, 2017,32(2):324-337.
48 陆峥, 柴琳娜, 张涛,等. AMSR2土壤水分产品在黑河流域中上游的验证[J]. 遥感技术与应用, 2017,32(2):324-337.
49 Lu Zheng,Han Menglei,Lu Hui,et al.Estimating Soil Moisture in the Middle and Upper Reaches ofthe Heihe River Basin based on AMSR2 Multi-brightness Temperature[J].Remote Sensing Technology and Applica⁃tion,2020,35(1):33-47.
49 陆峥,韩孟磊,卢麾,等.基于AMSR2多频亮温的黑河流域中上游土壤水分估算研究[J].遥感技术与应用,2020,35(1):33-47.
[1] 蒋玲梅,崔慧珍,王功雪,杨建卫,王健,潘方博,苏旭,方西瑶. 积雪、土壤冻融与土壤水分遥感监测研究进展[J]. 遥感技术与应用, 2020, 35(6): 1237-1262.
[2] 董磊磊,王维真,吴月茹. 盐渍土介电特性及模型改进研究[J]. 遥感技术与应用, 2020, 35(4): 786-796.
[3] 王树果, 马春锋, 赵泽斌, 魏龙. 基于Sentinel-1及Landsat 8数据的黑河中游农田土壤水分估算[J]. 遥感技术与应用, 2020, 35(1): 13-22.
[4] 李雷,郑兴明,赵凯,李晓峰,王广蕊. 基于CCI土壤水分产品的干旱指数精度评价及其对东北地区粮食产量的影响[J]. 遥感技术与应用, 2020, 35(1): 111-119.
[5] 罗家顺,邱建秀,赵天杰,王大刚. 基于Sentinel-1数据的黑河中游土壤水分反演[J]. 遥感技术与应用, 2020, 35(1): 23-32.
[6] 陆峥,韩孟磊,卢麾,彭雪婷,蒙莎莎,刘进,杨晓帆. 基于AMSR2多频亮温的黑河流域中上游土壤水分估算研究[J]. 遥感技术与应用, 2020, 35(1): 33-47.
[7] 胡路,赵天杰,施建成,李尚楠,樊东,王平凯,耿德源,肖青,崔倩,陈德清. 基于地基微波辐射观测的土壤水分反演算法评估[J]. 遥感技术与应用, 2020, 35(1): 74-84.
[8] 陈勇强,杨娜,胡新,佟明远. SMOS与SMAP过境时段表层土壤水分的稳定性研究[J]. 遥感技术与应用, 2020, 35(1): 58-64.
[9] 劳从坤,杨娜,徐少博,汤燕杰,张恒杰. 反演策略对SMOS土壤水分反演算法的影响研究[J]. 遥感技术与应用, 2020, 35(1): 65-73.
[10] 范悦,邱建秀,董建志,张小虎,王大刚. 基于Triple Collocation方法的微波土壤水分产品不确定性分析与时空变化规律研究[J]. 遥感技术与应用, 2020, 35(1): 85-96.
[11] 王树果,刘伟,梁亮. 基于Triple-Collocation方法的微波遥感土壤水分产品不确定性分析及数据融合[J]. 遥感技术与应用, 2019, 34(6): 1227-1234.
[12] 刘克俭,闫敏,冯琦. 多层土壤观测数据同化的森林碳、水通量模拟[J]. 遥感技术与应用, 2019, 34(5): 950-958.
[13] 李瑞娟, 李兆富, 郝睿, 张舒昱, 潘剑君. 亚洲区域AMSR2与SMOS土壤水分产品对比研究[J]. 遥感技术与应用, 2019, 34(1): 125-134.
[14] 白瑜,孟治国,赵凯. 像元尺度土壤水分监测网络及其对L波段土壤水分产品的初步验证结果[J]. 遥感技术与应用, 2018, 33(1): 78-87.
[15] 向怡衡,张明敏,张兰慧,贺缠生,王一博,白晓. 祁连山区不同植被类型上的SMOS遥感土壤水分产品质量评估[J]. 遥感技术与应用, 2017, 32(5): 835-843.